Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kappacher, Johann

  • Google
  • 4
  • 8
  • 68

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021Controlling the high temperature deformation behavior and thermal stability of ultra-fine-grained W by re alloying6citations
  • 2021How grain boundary characteristics influence plasticity close to and above the critical temperature of ultra-fine grained bcc Ta2.5W16citations
  • 2020Thermally activated deformation mechanisms and solid solution softening in W-Re alloys investigated via high temperature nanoindentation46citations
  • 2019Beryllium – A challenge for preparation and mechanical characterizationcitations

Places of action

Chart of shared publication
Renk, Oliver
1 / 15 shared
Maier-Kiener, Verena
4 / 24 shared
Clemens, Helmut
4 / 120 shared
Kiener, Daniel
3 / 39 shared
Renk, O.
1 / 4 shared
Leitner, Alexander
1 / 2 shared
Rolli, R.
1 / 8 shared
Siller, Maximilian
1 / 3 shared
Chart of publication period
2021
2020
2019

Co-Authors (by relevance)

  • Renk, Oliver
  • Maier-Kiener, Verena
  • Clemens, Helmut
  • Kiener, Daniel
  • Renk, O.
  • Leitner, Alexander
  • Rolli, R.
  • Siller, Maximilian
OrganizationsLocationPeople

article

How grain boundary characteristics influence plasticity close to and above the critical temperature of ultra-fine grained bcc Ta2.5W

  • Maier-Kiener, Verena
  • Kappacher, Johann
  • Clemens, Helmut
  • Kiener, Daniel
  • Renk, O.
Abstract

<p>Dislocation-grain boundary interaction is widely accepted as the rate-controlling process for ultra-fine grained bcc metals in their high temperature deformation regime above the critical temperature. However, the influence of different types of grain boundaries remains widely unexplored so far. To this end we present here an advanced high temperature nanoindentation study on Ta2.5W specimens consisting of two distinctively different grain boundary types, but with similar submicron average spacing. While one set of samples consisted of a predominant fraction of high-angle boundaries, the second set contained mainly low-angle boundaries. Fully recrystallized samples served as a coarse grained reference batch. Using advanced nanoindentation at elevated temperatures up to 823 K, we find a temperature invariant hardness in the case of the low- and a strongly pronounced temperature dependence for the high-angle grain boundary samples. This underlines the importance of grain boundary diffusivity for the predominant process of interfacial stress relaxation. Pronounced interaction of dislocations with oxygen impurity atoms was observed from 473 to 773 K for the coarse grained microstructure, yielding serrated flow as an indicator for a Portevin-Le Chatelier effect up to 573 K. Both grain boundary types showed a significant influence to the dislocation-impurity interaction, whereby the high-angle grain boundaries suppress discrete flow characteristics.</p>

Topics
  • impedance spectroscopy
  • grain
  • grain boundary
  • Oxygen
  • hardness
  • nanoindentation
  • dislocation
  • plasticity
  • diffusivity
  • critical temperature
  • grain boundary diffusivity