People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Atwood, Robert C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024An in situ imaging investigation of the effect of gas flow rates on directed energy depositioncitations
- 2024An in situ imaging investigation of the effect of gas flow rates on directed energy depositioncitations
- 2023Controlling solute channel formation using magnetic fields
- 2023In situ correlative observation of humping-induced cracking in directed energy deposition of nickel-based superalloys
- 2022Quantification of Interdependent Dynamics during Laser Additive Manufacturing Using X-Ray Imaging Informed Multi-Physics and Multiphase Simulation
- 2021Oxidation induced mechanisms during directed energy deposition additive manufactured titanium alloy buildscitations
- 2021Correlative synchrotron X-ray imaging and diffraction of directed energy deposition additive manufacturingcitations
- 2019Combined deformation and solidification-driven porosity formation in aluminum alloyscitations
- 2015Transgranular liquation cracking of grains in the semi-solid state
- 2007Non-destructive quantitative 3D analysis for the optimisation of tissue scaffoldscitations
- 2007Non-destructive quantitative 3D analysis for the optimisation of tissue scaffoldscitations
Places of action
Organizations | Location | People |
---|
article
Correlative synchrotron X-ray imaging and diffraction of directed energy deposition additive manufacturing
Abstract
The governing mechanistic behaviour of Directed Energy Deposition Additive Manufacturing (DED-AM) is revealed by a combined in situ and operando synchrotron X-ray imaging and diffraction study of a nickel-base superalloy, IN718. Using a unique DED-AM process replicator, real-space imaging enables quantification of the melt-pool boundary and flow dynamics during solidification. This imaging knowledge was also used to inform precise diffraction measurements of temporally resolved microstructural phases during transformation and stress development with a spatial resolution of 100 µm. The diffraction quantified thermal gradient enabled a dendritic solidification microstructure to be predicted and coupled to the stress state. The fast cooling rate entirely suppressed the formation of secondary phases or recrystallisation in the solid-state. Upon solidification, the stresses rapidly increase to the yield strength during cooling. This insight, combined with the large solidification range of IN718 suggests that the accumulated plasticity exhausts the ductility of the alloy, causing liquation cracking. This study has revealed the mechanisms that govern the formation of highly non-equilibrium microstructures during DED-AM.