People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bednarczyk, Wiktor
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Enhanced mechanical properties and microstructural stability of ultrafine-grained biodegradable Zn–Li–Mn–Mg–Cu alloys produced by rapid solidification and high-pressure torsioncitations
- 2023Determination of critical resolved shear stresses associated with <a> slips in pure Zn and Zn-Ag alloys via micro-pillar compressioncitations
- 2023Determination of critical resolved shear stresses associated with slips in pure Zn and Zn-Ag alloys via micro-pillar compressioncitations
- 2023Investigation of slip systems activity and grain boundary sliding in fine-grained superplastic zinc alloycitations
- 2022Long-term in vitro corrosion behavior of Zn-3Ag and Zn-3Ag-0.5Mg alloys considered for biodegradable implant applicationscitations
- 2021Abnormal grain growth in a Zn-0.8Ag alloy after processing by high-pressure torsioncitations
- 2020A novel high-strength Zn-3Ag-0.5Mg alloy processed by hot extrusion, cold rolling or high-pressure torsioncitations
- 2020Microstructure and mechanical properties of a Zn-0.5Cu alloy processed by high-pressure torsioncitations
- 2020A novel high-strength Zn-3Ag-0.5Mg alloy processed by hot extrusion, cold rolling, or high-pressure torsioncitations
- 2019Design of novel Zn-Ag-Zr alloy with enhanced strength as a potential biodegradable implant materialcitations
Places of action
Organizations | Location | People |
---|
article
Abnormal grain growth in a Zn-0.8Ag alloy after processing by high-pressure torsion
Abstract
Abnormal grain growth (AGG) in a Zn-0.8Ag (wt%) alloy, produced through the application of high-pressure torsion (HPT), was systematically investigated using scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), high-resolution transmission electron microscopy (HR-TEM) and microhardness testing. The HPT-deformed alloy exhibits AGG at room temperature without any additional heat treatment. Analysis by EBSD revealed oriented grain nucleation in a {112¯0}〈0001〉 direction from the initial (0001) fibre texture which agrees with the maximum energy release model. New grains were oriented according to the minimal Young's modulus direction (c-axis), parallel to the shearing direction. The strain-induced dissolution of nanocrystalline Zn 3 Ag precipitates was identified as the main driving force for AGG in this alloy. The strains necessary for the initiation and termination of AGG were determined as ~4.0 and ~5.0, respectively. The increase in solid-solution strengthening caused an increase in hardness from ~47 HK in the fine-grained centre to ~84 HK in the coarse-grained region. A Hall-Petch investigation revealed grain refinement softening below a grain size of 23 µm. These results provide the first comprehensive description of AGG in metallic materials processed by a severe plastic deformation method at room temperature.