Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aitken, Zachary H.

  • Google
  • 1
  • 7
  • 76

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Chemical-Affinity Disparity and Exclusivity Drive Atomic Segregation, Short-Range Ordering, and Cluster Formation in High-Entropy Alloys76citations

Places of action

Chart of shared publication
Chen, Shuai
1 / 1 shared
Pattamatta, Subrahmanyam
1 / 1 shared
Yu, Zhi Gen
1 / 1 shared
Banerjee, Rajarshi
1 / 22 shared
Zhang, Yong-Wei
1 / 2 shared
Liaw, Peter K.
1 / 10 shared
Srolovitz, David
1 / 65 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Chen, Shuai
  • Pattamatta, Subrahmanyam
  • Yu, Zhi Gen
  • Banerjee, Rajarshi
  • Zhang, Yong-Wei
  • Liaw, Peter K.
  • Srolovitz, David
OrganizationsLocationPeople

article

Chemical-Affinity Disparity and Exclusivity Drive Atomic Segregation, Short-Range Ordering, and Cluster Formation in High-Entropy Alloys

  • Chen, Shuai
  • Aitken, Zachary H.
  • Pattamatta, Subrahmanyam
  • Yu, Zhi Gen
  • Banerjee, Rajarshi
  • Zhang, Yong-Wei
  • Liaw, Peter K.
  • Srolovitz, David
Abstract

Recently, atomic segregation, short-range ordering, and cluster formation have been observed experimentally in high-entropy alloys (HEAs). Differences in the atomic size and electronegativity of constituent elements were proposed to be the underlying cause of such ordering. Here, we investigated two HEAs, CoCuFeNiPd and CoCuFeNiTi, using a combination of Monte Carlo and molecular dynamic simulations. Our results show that the CoCuFeNiPd HEA exhibits much stronger atomic segregation and short-range ordering than the CoCuFeNiTi HEA, despite the larger differences in the relative atomic size and electronegativity of Ti with other constituent elements, as compared to those of Pd, suggesting that the differences in the atomic size and electronegativity alone are insufficient to explain the simulation results. We find that it is the chemical-affinity disparity and exclusivity between Ti (Pd) with the remaining species that lead to the different clustering behavior in these two HEAs. Specifically, three conditions for strong atomic segregation and short-range ordering are identified: 1. a large chemical-affinity disparity amongst the chemical elements; 2. a high chemical-element exclusivity in low-, medium-, and high-energy clusters; and 3. a net energy reduction associated with low- and medium-energy-cluster formation that compensates for the energy increase associated with high-energy-cluster formation. Our findings are in agreement with experimental results reported in literature, and highlight the importance of chemical-affinity disparity and exclusivity in influencing the microstructure of HEAs, explain the origin of high-energy-cluster formation in HEAs, and provide guidelines for designing HEAs with excellent properties.

Topics
  • impedance spectroscopy
  • cluster
  • simulation
  • clustering