People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stemper, Lukas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Unraveling the potential of Cu addition and cluster hardening in Al-Mg-Si alloyscitations
- 2024Influence of Solidification Rate and Impurity Content on 5/7-Crossover Alloys
- 2024Metallographic Etching of Al–Mg–Zn–(Cu) Crossover Alloyscitations
- 2023Industry-oriented sample preparation with an in- ductively heated laboratory continuous casting plant for aluminum alloys
- 2023Fine-grained aluminium crossover alloy for high-temperature sheet formingcitations
- 2021Crossover alloys
- 2021Giant hardening response in AlMgZn(Cu) alloyscitations
- 2020Prototypic Lightweight Alloy Design for Stellar-Radiation Environmentscitations
- 2020Age-hardening response of AlMgZn alloys with Cu and Ag additionscitations
- 2019Industry-oriented sample preparation of 6xxx and 5xxx aluminum alloys in laboratory scale
- 2019Age-hardening of high pressure die casting AlMg alloys with Zn and combined Zn and Cu additionscitations
- 2017Modifizierte 5xxx-Aluminiumknetlegierungen für den Einsatz als Strukturgusswerkstoff in der Automobilindustrie
Places of action
Organizations | Location | People |
---|
article
Giant hardening response in AlMgZn(Cu) alloys
Abstract
This study presents a thermomechanical processing concept which is capable of exploiting the full industrial application potential of recently introduced AlMgZn(Cu) alloys. The beneficial linkage of alloy design and processing allows not only to satisfy the long-standing trade-off between high mechanical strength in use and good formability during processing but also addresses the need for economically feasible processing times. After an only 3-hour short pre-aging treatment at 100°C, the two investigated alloys, based on commercial EN AW-5182 and modified with additions of Zn and Zn+Cu respectively, show high formability due to increased work-hardening. Then, these alloys exhibit a giant hardening response of up to 184 MPa to reach a yield strength of 410 MPa after a 20-minute short final heat treatment at 185°C, i.e. paint-baking. This rapid hardening response strongly depends on the number density, size distribution and constitution of precursors acting as preferential nucleation sites for T-phase precursor precipitation during the final high-temperature aging treatment and is significantly increased by the addition of Cu. Minor deformation (2%) after pre-aging and before final heat treatment further enhances the development of hardening precipitates additionally by activating dislocation-supported nucleation and growth. Tensile testing, quantitative and analytical electron-microscopy methods, atom probe analysis and DFT calculations were used to characterize the alloys investigated in this work over the thermomechanical processing route. The influence of pre-strain on the hardening response and the role of Cu additions in early-stage cluster nucleation are discussed in detail and supported by in-situ STEM experiments and first-principles calculations.