People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vermeij, Tijmen
Swiss Federal Laboratories for Materials Science and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024An integrated experimental-numerical study of martensite/ferrite interface damage initiation in dual-phase steelscitations
- 2024Magnetron sputter deposition of amorphous silicon–SiO 2 quantized nanolaminatescitations
- 2024+SSLIP: Automated Radon-assisted and Rotation-corrected identification of complex HCP slip system activity fields from DIC data
- 2024A quasi-2D integrated experimental–numerical approach to high-fidelity mechanical analysis of metallic microstructurescitations
- 2024Enhancement of copper nanoparticle yield in magnetron sputter inert gas condensation by applying substrate bias voltage and its influence on thin film morphologycitations
- 2024Magnetron Sputter Deposition of Amorphous Silicon–SiO<sub>2</sub> Quantized Nanolaminatescitations
- 2023Micro-mechanical deformation behavior of heat-treated laser powder bed fusion processed Ti-6Al-4Vcitations
- 2022Plasticity, localization, and damage in ferritic-pearlitic steel studied by nanoscale digital image correlationcitations
- 2022A Nanomechanical Testing Framework Yielding Front&Rear-Sided, High-Resolution, Microstructure-Correlated SEM-DIC Strain Fieldscitations
- 2022Influence of porosity and blistering on the thermal fatigue behavior of tungstencitations
- 2021Revisiting the martensite/ferrite interface damage initiation mechanism: The key role of substructure boundary slidingcitations
- 2021Recrystallization-mediated crack initiation in tungsten under simultaneous high-flux hydrogen plasma loads and high-cycle transient heatingcitations
Places of action
Organizations | Location | People |
---|
article
Revisiting the martensite/ferrite interface damage initiation mechanism: The key role of substructure boundary sliding
Abstract
Martensite/ferrite (M/F) interface damage plays a critical role in controlling failure of dual-phase (DP) steels and is commonly understood to originate from the large phase contrast between martensite and ferrite. This however conflicts with a few, recent observations, showing that considerable M/F interface damage initiation is often accompanied by apparent martensite island plasticity and weak M/F strain partitioning. In fact, martensite has a complex hierarchical structure which induces a strongly heterogeneous and orientation-dependent plastic response. Depending on the local stress state, (lath) martensite is presumed to be hard to deform based on common understanding. However, when favourably oriented, substructure boundary sliding can be triggered at a resolved shear stress which is comparable to that of ferrite. Moreover, careful measurements of the M/F interface structure indicate the occurrence of sharp martensite wedges protruding into the ferrite and clear steps in correspondence with lath boundaries, constituting a jagged M/F interfacial morphology that may have a large effect on the M/F interface behaviour. By taking into account the substructure and morphology features, which are usually overlooked in the literature, this contribution re-examines the M/F interface damage initiation mechanism. A systematic study is performed, which accounts for different loading conditions, phase contrasts, residual stresses/strains resulting from the preceding martensitic phase transformation, as well as the possible M/F interfacial morphologies. Crystal plasticity simulations are conducted to include inter-lath retained austenite (RA) films enabling the substructure boundary sliding. The results show that the substructure boundary sliding, which is the most favourable plastic deformation mode of lath martensite, can trigger M/F interface damage and hence control the failure behaviour of DP steels. The present finding may change the way in which M/F interface damage initiation is understood as a critical failure mechanism in DP steels.