People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhao, Huan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Atom probe tomography-assisted kinetic assessment of spinodal decomposition in an Al-12.5 at.%Zn alloycitations
- 2022Non-destructive testing of composite fibre materials with hyperspectral imaging – evaluative studies in the EU H2020 FibreEUse projectcitations
- 2022Non-Destructive Testing of Composite Fiber Materials With Hyperspectral Imaging—Evaluative Studies in the EU H2020 FibreEUse Projectcitations
- 2022Composite repair and remanufacturing.citations
- 2021Multiscale analysis of grain boundary microstructure in high strength 7xxx Al alloyscitations
- 2021CALPHAD-informed phase-field modeling of grain boundary microchemistry and precipitation in Al-Zn-Mg-Cu alloys
- 2020Interplay of Chemistry and Faceting at Grain Boundaries in a Model Al Alloycitations
- 2020Grain boundary segregation and precipitation in an Al-Zn-Mg-Cu alloycitations
- 2018Parameter free quantitative analysis of atom probe data by correlation functions: Application to the precipitation in Al-Zn-Mg-Cucitations
- 2018Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloycitations
Places of action
Organizations | Location | People |
---|
article
Multiscale analysis of grain boundary microstructure in high strength 7xxx Al alloys
Abstract
The size, distribution and chemical composition of grain boundary η-phase precipitates (GBPs) and micro-segregation present in thick plate (140 mm) 7xxx Al alloys has been quantified across a range of length scales. To address the known limitations of individual characterisation methods, a number of cross-correlated, high resolution techniques have been used, including atom probe tomography (APT). A new-generation high-Zn alloy (AA7085) has been compared to a more established material, AA7050, in T7651 temper conditions. The results show that high angle grain boundaries in both alloys are dominated by quench-induced GBPs (Q-GBPs), covering up to ~40% of the area in AA7050. When viewed on brittle intergranular fracture surfaces and in 3D, the Q-GBPs appear much larger than previously reported and exhibit complex branched, dendritic-like morphologies. In AA7050, the Q-GBPs contain substantially higher levels of Cu (by 29 %) and Al (by 37%) and lower Zn (by 33 %) than AA7085. Classical modelling demonstrates that these differences result from different transformation pathways, with precipitates in the more quench sensitive AA7050 alloy nucleating at higher temperatures, which exaggerates the effect of alloy chemistry. In both alloys GB segregation was limited, with low levels of Zn detected relative to the matrix, but more Mg and less Cu in AA7050. It is, therefore, proposed that the higher Cu and Al, and lower Zn content, of the large Q-GBPs present in AA7050 is the main difference in GB microchemistry between the two materials and is the primary reason its GBs are less chemically active. The implications for the relative susceptibilities of the alloys to environmentally assisted cracking are briefly discussed.