People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rijkenberg, Arjan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2021Phase-transformation and precipitation kinetics in vanadium micro-alloyed steels by in-situ, simultaneous neutron diffraction and SANScitations
- 2021Phase-transformation and precipitation kinetics in vanadium micro-alloyed steels by in-situ, simultaneous neutron diffraction and SANScitations
- 2020Evolution of the precipitate composition during annealing of vanadium micro-alloyed steels by in-situ SANScitations
- 2020Correlative analysis of interaction between recrystallization and precipitation during sub-critical annealing of cold-rolled low-carbon V and Ti–V bearing microalloyed steelscitations
- 2019Interaction of precipitation with austenite-to-ferrite phase transformation in vanadium micro-alloyed steelscitations
- 2019Interaction of precipitation with austenite-to-ferrite phase transformation in vanadium micro-alloyed steelscitations
- 2019Interaction of precipitation with austenite-to-ferrite phase transformation in vanadium micro-alloyed steels
- 2019Interaction of precipitation with austenite-to-ferrite phase transformation in vanadium micro-alloyed steelscitations
- 2018Quasi in-situ analysis of geometrically necessary dislocation density in α-fibre and γ-fibre during static recrystallization in cold-rolled low-carbon Ti-V bearing microalloyed steelcitations
- 2017In-situ characterisation of austenite/ferrite transformation kinetics and modelling of interphase precipitation inter-sheet spacing in V microalloyed HSLA steelscitations
- 2016Analysis of the extent of interphase precipitation in V-HSLA steels through in-situ characterization of the γ/α transformationcitations
- 2015Application of In-Situ Material Characterization Methods to Describe Role of Mo During Processing of Vbearing Micro-Alloyed Steels
Places of action
Organizations | Location | People |
---|
article
Evolution of the precipitate composition during annealing of vanadium micro-alloyed steels by in-situ SANS
Abstract
<p>In-situ Small-Angle Neutron Scattering (SANS) is used to determine the time evolution of the chemical composition of precipitates at 650 °C and 700 °C in three micro-alloyed steels with different vanadium (V) and carbon (C) concentrations. Precipitates with a distribution of substoichiometric carbon-to-metal ratios are measured in all steels. The precipitates are initially metastable with a high iron (Fe) content, which is gradually being substituted by vanadium during isothermal annealing. Eventually a plateau in the composition of the precipitate phase is reached. Faster changes in the precipitate chemical composition are observed at the higher temperature in all steels because of the faster vanadium diffusion at 700 °C. At both temperatures, the addition of more vanadium and more carbon to the steel has an accelerating effect on the evolution of the precipitate composition as a result of a higher driving force for precipitation. Addition of vanadium to the nominal composition of the steel leads to more vanadium rich precipitates, with less iron and a smaller carbon-to-metal ratio. Atom Probe Tomography (APT) shows the presence of precipitates with a distribution of carbon-to-metal ratios, ranging from 0.75 to 1, after 10 h of annealing at 650 °C or 700 °C in all steels. These experimental results are coupled to ThermoCalc equilibrium calculations and literature findings to support the Small-Angle Neutron Scattering results.</p>