Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhang, Heng

  • Google
  • 15
  • 67
  • 187

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2024Strong Substrate Influence on Atomic Structure and Properties of Epitaxial VO 2 Thin Films3citations
  • 2024Strong substrate influence on atomic structure and properties of epitaxial VO2 thin films3citations
  • 2023Strong substrate influence on atomic structure and properties of epitaxial VO2 thin films3citations
  • 2023Effects of Intermixing in Sb2Te3/Ge1+xTe Multilayers on the Thermoelectric Power Factor1citations
  • 2023Dislocations and a domains coupling in PbTiO3 thin films4citations
  • 2023N=8 Armchair Graphene Nanoribbons: Solution Synthesis and High Charge Carrier Mobility**citations
  • 2023N=8 armchair graphene nanoribbons10citations
  • 2022Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin films13citations
  • 2022Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin films13citations
  • 2021Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applications11citations
  • 2021Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applications11citations
  • 2020Differences in Sb2Te3 growth by pulsed laser and sputter deposition13citations
  • 2020Frequency-domain study of nonthermal gigahertz phonons reveals Fano coupling to charge carriers12citations
  • 2019Fluorine‐Free Noble Salt Anion for High‐Performance All‐Solid‐State Lithium–Sulfur Batteries82citations
  • 2017Vibrational spectroscopic studies combined with viscosity analysis and VTF calculation for hybrid polymer electrolytes8citations

Places of action

Chart of shared publication
Atul, Atul
3 / 4 shared
Kooi, Bart J.
4 / 29 shared
Ahmadi, Majid
4 / 28 shared
Koutsogiannis, Panagiotis
3 / 6 shared
Kooi, Bart Jan
4 / 74 shared
Blake, Graeme R.
3 / 46 shared
Guiblin, Nicolas
1 / 3 shared
Paillard, Charles
1 / 11 shared
Co, Kevin
1 / 4 shared
Xu, Ran
1 / 2 shared
Otoničar, Mojca
1 / 8 shared
Dkhil, Brahim
1 / 26 shared
Cheng, Long
1 / 6 shared
Wang, Yujia
1 / 2 shared
Horton, Peter N.
1 / 3 shared
Bogani, Lapo
2 / 2 shared
Pawlak, Rémy
2 / 4 shared
Narita, Akimitsu
2 / 12 shared
Hinaut, Antoine
2 / 3 shared
Okuno, Masanari
2 / 2 shared
Yao, Xuelin
2 / 5 shared
Meyer, Ernst
2 / 8 shared
Graf, Robert
2 / 12 shared
Coles, Simon J.
1 / 18 shared
Müllen, Klaus
2 / 32 shared
Kong, Fanmiao
2 / 2 shared
Wang, Hai I.
2 / 4 shared
Bonn, Mischa
3 / 15 shared
Horton, Peter
1 / 11 shared
Coles, Sj
1 / 29 shared
Levinsky, Joshua J. B.
1 / 2 shared
Palasantzas, Georgios
1 / 10 shared
Momand, Jamo
5 / 22 shared
Zhu, Xiaotian
2 / 2 shared
Ten Brink, Gert H.
2 / 32 shared
Palasantzas, George
1 / 8 shared
Guo, Qikai
1 / 3 shared
Levinsky, Joshua
1 / 1 shared
Yimam, Daniel
1 / 3 shared
Kooi, Bart
1 / 6 shared
Simpson, Robert E.
1 / 6 shared
Vashishta, Priya
1 / 6 shared
Branicio, Paulo S.
1 / 5 shared
Nakano, Aiichiro
1 / 5 shared
Shimojo, Fuyuki
1 / 4 shared
Ning, Jing
1 / 5 shared
Martinez, Jose C.
1 / 1 shared
Tiwari, Subodh C.
1 / 1 shared
Kalia, Rajiv K.
1 / 2 shared
Fytas, George
1 / 19 shared
Wang, Hai
1 / 5 shared
Vasileiadis, Thomas
1 / 7 shared
Graczykowski, Bartlomiej
1 / 12 shared
Santiago, Alexander
1 / 1 shared
Armand, Michel
1 / 15 shared
Li, Chunmei
1 / 2 shared
Martinezibañez, Maria
1 / 1 shared
Muñozmárquez, Miguel Ángel
1 / 1 shared
Judez, Xabier
1 / 1 shared
Carrasco, Javier
1 / 5 shared
Eshetu, Gebrekidan Gebresilassie
1 / 1 shared
Piszcz, Michał
1 / 2 shared
Żukowska, Grażyna
1 / 12 shared
Siekierski, Maciej
1 / 6 shared
Sukiennik, Marta
1 / 1 shared
Lemańska, Karolina
1 / 1 shared
Marczewski, Maciej
1 / 4 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2017

Co-Authors (by relevance)

  • Atul, Atul
  • Kooi, Bart J.
  • Ahmadi, Majid
  • Koutsogiannis, Panagiotis
  • Kooi, Bart Jan
  • Blake, Graeme R.
  • Guiblin, Nicolas
  • Paillard, Charles
  • Co, Kevin
  • Xu, Ran
  • Otoničar, Mojca
  • Dkhil, Brahim
  • Cheng, Long
  • Wang, Yujia
  • Horton, Peter N.
  • Bogani, Lapo
  • Pawlak, Rémy
  • Narita, Akimitsu
  • Hinaut, Antoine
  • Okuno, Masanari
  • Yao, Xuelin
  • Meyer, Ernst
  • Graf, Robert
  • Coles, Simon J.
  • Müllen, Klaus
  • Kong, Fanmiao
  • Wang, Hai I.
  • Bonn, Mischa
  • Horton, Peter
  • Coles, Sj
  • Levinsky, Joshua J. B.
  • Palasantzas, Georgios
  • Momand, Jamo
  • Zhu, Xiaotian
  • Ten Brink, Gert H.
  • Palasantzas, George
  • Guo, Qikai
  • Levinsky, Joshua
  • Yimam, Daniel
  • Kooi, Bart
  • Simpson, Robert E.
  • Vashishta, Priya
  • Branicio, Paulo S.
  • Nakano, Aiichiro
  • Shimojo, Fuyuki
  • Ning, Jing
  • Martinez, Jose C.
  • Tiwari, Subodh C.
  • Kalia, Rajiv K.
  • Fytas, George
  • Wang, Hai
  • Vasileiadis, Thomas
  • Graczykowski, Bartlomiej
  • Santiago, Alexander
  • Armand, Michel
  • Li, Chunmei
  • Martinezibañez, Maria
  • Muñozmárquez, Miguel Ángel
  • Judez, Xabier
  • Carrasco, Javier
  • Eshetu, Gebrekidan Gebresilassie
  • Piszcz, Michał
  • Żukowska, Grażyna
  • Siekierski, Maciej
  • Sukiennik, Marta
  • Lemańska, Karolina
  • Marczewski, Maciej
OrganizationsLocationPeople

article

Differences in Sb2Te3 growth by pulsed laser and sputter deposition

  • Simpson, Robert E.
  • Kooi, Bart J.
  • Vashishta, Priya
  • Branicio, Paulo S.
  • Nakano, Aiichiro
  • Shimojo, Fuyuki
  • Ning, Jing
  • Momand, Jamo
  • Zhang, Heng
  • Martinez, Jose C.
  • Tiwari, Subodh C.
  • Kalia, Rajiv K.
Abstract

High quality van der Waals chalcogenides are important for phase change data storage, thermoelectrics, and spintronics. Using a combination of statistical design of experiments and density functional theory, we clarify how out-of-equilibrium van der Waals epitaxial deposition methods can improve the crystal quality of Sb2Te3 films. We compare films grown by radio frequency sputtering and pulsed laser deposition (PLD). The growth factors that influence the crystal quality for each method are different. For PLD grown films a thin amorphous Sb2Te3 seed layer most significantly influences the crystal quality. In contrast, the crystalline quality of films grown by sputtering is rather sensitive to the deposition temperature and less affected by the presence of a seed layer. This difference is somewhat surprising as both methods are out-of-thermal-equilibrium plasma-based methods. Non-adiabatic quantum molecular dynamics simulations show that this difference originates from the density of excited atoms in the plasma. The PLD plasma is more intense and with higher energy than that used in sputtering, and this increases the electronic temperature of the deposited atoms, which concomitantly increases the adatom diffusion lengths in PLD. In contrast, the adatom diffusivity is dominated by the thermal temperature for sputter grown films. These results explain the wide range of Sb2Te3 and superlattice crystal qualities observed in the literature. These results indicate that, contrary to popular belief, plasma-based deposition methods are suitable for growing high quality crystalline chalcogenides. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Topics
  • density
  • impedance spectroscopy
  • amorphous
  • phase
  • theory
  • experiment
  • simulation
  • molecular dynamics
  • laser emission spectroscopy
  • density functional theory
  • diffusivity
  • pulsed laser deposition