Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Momand, Jamo

  • Google
  • 22
  • 75
  • 393

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (22/22 displayed)

  • 2022Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenum3citations
  • 2022Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenum3citations
  • 2022Phase Separation in Ge-Rich GeSbTe at Different Length Scales: Melt-Quenched Bulk versus Annealed Thin Films5citations
  • 2022Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin films13citations
  • 2022Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin films13citations
  • 2021Polytriphenylamine composites for energy storage electrodes:Effect of pendant vs. backbone polymer architecture of the electroactive group3citations
  • 2021Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applications11citations
  • 2021Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applications11citations
  • 2021Controlling phase separation in thermoelectric Pb1-xGexTe to minimize thermal conductivity6citations
  • 2021Polytriphenylamine composites for energy storage electrodes3citations
  • 2020Single-Source, Solvent-Free, Room Temperature Deposition of Black γ-CsSnI 3 Films45citations
  • 2020Differences in Sb2Te3 growth by pulsed laser and sputter deposition13citations
  • 2020Single‐Source, Solvent‐Free, Room Temperature Deposition of Black γ‐CsSnI3 Films45citations
  • 2019Chemical Solution Deposition of Ordered 2D Arrays of Room-Temperature Ferrimagnetic Cobalt Ferrite Nanodots8citations
  • 2019High Resolution Imaging of Chalcogenide Superlattices for Data Storage Applications34citations
  • 2019Low temperature epitaxy of tungsten-telluride heterostructure films6citations
  • 2019High Resolution Imaging of Chalcogenide Superlattices for Data Storage Applications:Progress and Prospects34citations
  • 2018Tailoring the epitaxy of Sb2Te3 and GeTe thin films using surface passivation15citations
  • 2017Formation of resonant bonding during growth of ultrathin GeTe films29citations
  • 2016Crystallization Kinetics of Supercooled Liquid Ge-Sb Based on Ultrafast Calorimetry44citations
  • 2016Ordered Peierls distortion prevented at growth onset of GeTe ultra-thin films23citations
  • 2014Reversible amorphous-crystalline phase changes in a wide range of Se1-xTex alloys studied using ultrafast differential scanning calorimetry26citations

Places of action

Chart of shared publication
Troglia, Alessandro
2 / 3 shared
Kooi, Bart Jan
12 / 74 shared
Vliet, Stefan Van
1 / 1 shared
Frenken, Joost W. M.
2 / 8 shared
Bliem, Roland
2 / 14 shared
Yetik, Görsel
2 / 2 shared
Farokhipoor, Saeedeh
2 / 4 shared
Kooi, Bart J.
7 / 29 shared
Van Vliet, Stefan
1 / 1 shared
Palasantzas, Georgios
2 / 10 shared
Ahmadi, Majid
1 / 28 shared
Abou El Kheir, Omar
1 / 3 shared
Bernasconi, Marco
2 / 13 shared
Yimam, Daniel Tadesse
1 / 1 shared
Levinsky, Joshua J. B.
1 / 2 shared
Blake, Graeme R.
3 / 46 shared
Zhang, Heng
5 / 15 shared
Zhu, Xiaotian
2 / 2 shared
Ten Brink, Gert H.
2 / 32 shared
Palasantzas, George
1 / 8 shared
Guo, Qikai
1 / 3 shared
Levinsky, Joshua
1 / 1 shared
Bose, Ranjita
1 / 3 shared
Picchioni, Francesco
2 / 48 shared
Dianatdar Langeroudi, Afshin
1 / 2 shared
Akin, Okan
2 / 2 shared
Mongatti, Irene
2 / 2 shared
Ruggeri, Giacomo
2 / 40 shared
Yimam, Daniel
1 / 3 shared
Kooi, Bart
1 / 6 shared
Baas, Jacobus
1 / 10 shared
Ocelík, Václav
1 / 127 shared
Kumar, Anil
1 / 19 shared
Lian, Hong
1 / 2 shared
Dianatdar, Afshin
1 / 7 shared
Bose, Ranjita K.
1 / 32 shared
Ledinsky, Martin
1 / 4 shared
Koster, Gertjan
2 / 31 shared
Rijnders, Guus
2 / 20 shared
Remes, Zdenek
2 / 5 shared
Morales-Masis, Monica
2 / 24 shared
Birkhölzer, Yorick A.
1 / 5 shared
Smirnov, Yury
2 / 6 shared
Kiyek, Vivien M.
2 / 2 shared
Simpson, Robert E.
1 / 6 shared
Vashishta, Priya
1 / 6 shared
Branicio, Paulo S.
1 / 5 shared
Nakano, Aiichiro
1 / 5 shared
Shimojo, Fuyuki
1 / 4 shared
Ning, Jing
1 / 5 shared
Martinez, Jose C.
1 / 1 shared
Tiwari, Subodh C.
1 / 1 shared
Kalia, Rajiv K.
1 / 2 shared
Ledinský, Martin
1 / 4 shared
Rudolf, Petra
1 / 62 shared
Syariati, Ali
1 / 3 shared
Heuver, Jeroen A.
1 / 1 shared
Longo, Alessandro
1 / 20 shared
Varghese, Justin
1 / 1 shared
Xu, Jin
1 / 3 shared
Loos, Katja U.
1 / 56 shared
Noheda, Beatriz
1 / 41 shared
Portale, Giuseppe, A.
1 / 57 shared
Vermeulen, Paul. A.
3 / 5 shared
Calarco, Raffaella
3 / 16 shared
Boschker, Jos E.
2 / 6 shared
Wang, Ruining
3 / 4 shared
Riechert, Henning
1 / 12 shared
Ronneberger, Ider
1 / 2 shared
Mazzarello, Riccardo
1 / 7 shared
Wuttig, Matthias
2 / 39 shared
Zhang, Wei
1 / 54 shared
Chen, Bin
1 / 17 shared
Campi, Davide
1 / 9 shared
Verheijen, Marcel A.
1 / 39 shared
Chart of publication period
2022
2021
2020
2019
2018
2017
2016
2014

Co-Authors (by relevance)

  • Troglia, Alessandro
  • Kooi, Bart Jan
  • Vliet, Stefan Van
  • Frenken, Joost W. M.
  • Bliem, Roland
  • Yetik, Görsel
  • Farokhipoor, Saeedeh
  • Kooi, Bart J.
  • Van Vliet, Stefan
  • Palasantzas, Georgios
  • Ahmadi, Majid
  • Abou El Kheir, Omar
  • Bernasconi, Marco
  • Yimam, Daniel Tadesse
  • Levinsky, Joshua J. B.
  • Blake, Graeme R.
  • Zhang, Heng
  • Zhu, Xiaotian
  • Ten Brink, Gert H.
  • Palasantzas, George
  • Guo, Qikai
  • Levinsky, Joshua
  • Bose, Ranjita
  • Picchioni, Francesco
  • Dianatdar Langeroudi, Afshin
  • Akin, Okan
  • Mongatti, Irene
  • Ruggeri, Giacomo
  • Yimam, Daniel
  • Kooi, Bart
  • Baas, Jacobus
  • Ocelík, Václav
  • Kumar, Anil
  • Lian, Hong
  • Dianatdar, Afshin
  • Bose, Ranjita K.
  • Ledinsky, Martin
  • Koster, Gertjan
  • Rijnders, Guus
  • Remes, Zdenek
  • Morales-Masis, Monica
  • Birkhölzer, Yorick A.
  • Smirnov, Yury
  • Kiyek, Vivien M.
  • Simpson, Robert E.
  • Vashishta, Priya
  • Branicio, Paulo S.
  • Nakano, Aiichiro
  • Shimojo, Fuyuki
  • Ning, Jing
  • Martinez, Jose C.
  • Tiwari, Subodh C.
  • Kalia, Rajiv K.
  • Ledinský, Martin
  • Rudolf, Petra
  • Syariati, Ali
  • Heuver, Jeroen A.
  • Longo, Alessandro
  • Varghese, Justin
  • Xu, Jin
  • Loos, Katja U.
  • Noheda, Beatriz
  • Portale, Giuseppe, A.
  • Vermeulen, Paul. A.
  • Calarco, Raffaella
  • Boschker, Jos E.
  • Wang, Ruining
  • Riechert, Henning
  • Ronneberger, Ider
  • Mazzarello, Riccardo
  • Wuttig, Matthias
  • Zhang, Wei
  • Chen, Bin
  • Campi, Davide
  • Verheijen, Marcel A.
OrganizationsLocationPeople

article

Differences in Sb2Te3 growth by pulsed laser and sputter deposition

  • Simpson, Robert E.
  • Kooi, Bart J.
  • Vashishta, Priya
  • Branicio, Paulo S.
  • Nakano, Aiichiro
  • Shimojo, Fuyuki
  • Ning, Jing
  • Momand, Jamo
  • Zhang, Heng
  • Martinez, Jose C.
  • Tiwari, Subodh C.
  • Kalia, Rajiv K.
Abstract

High quality van der Waals chalcogenides are important for phase change data storage, thermoelectrics, and spintronics. Using a combination of statistical design of experiments and density functional theory, we clarify how out-of-equilibrium van der Waals epitaxial deposition methods can improve the crystal quality of Sb2Te3 films. We compare films grown by radio frequency sputtering and pulsed laser deposition (PLD). The growth factors that influence the crystal quality for each method are different. For PLD grown films a thin amorphous Sb2Te3 seed layer most significantly influences the crystal quality. In contrast, the crystalline quality of films grown by sputtering is rather sensitive to the deposition temperature and less affected by the presence of a seed layer. This difference is somewhat surprising as both methods are out-of-thermal-equilibrium plasma-based methods. Non-adiabatic quantum molecular dynamics simulations show that this difference originates from the density of excited atoms in the plasma. The PLD plasma is more intense and with higher energy than that used in sputtering, and this increases the electronic temperature of the deposited atoms, which concomitantly increases the adatom diffusion lengths in PLD. In contrast, the adatom diffusivity is dominated by the thermal temperature for sputter grown films. These results explain the wide range of Sb2Te3 and superlattice crystal qualities observed in the literature. These results indicate that, contrary to popular belief, plasma-based deposition methods are suitable for growing high quality crystalline chalcogenides. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Topics
  • density
  • impedance spectroscopy
  • amorphous
  • phase
  • theory
  • experiment
  • simulation
  • molecular dynamics
  • laser emission spectroscopy
  • density functional theory
  • diffusivity
  • pulsed laser deposition