People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Klein, Thomas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Investigation of complex single-walled intersecting structures fabricated by wire-arc directed energy depositioncitations
- 2024Residual Stresses in a Wire and Arc-Directed Energy-Deposited Al–6Cu–Mn (ER2319) Alloy Determined by Energy-Dispersive High-Energy X-ray Diffractioncitations
- 2024Demonstration of the Fabrication of a Large-Scale Aluminum Structure by Wire-Arc Directed Energy Deposition Using a Novel Aluminum Alloycitations
- 2024Novel Magnesium Nanocomposite for Wire-Arc Directed Energy Deposition
- 2024Novel Magnesium Nanocomposite for Wire-Arc Directed Energy Deposition
- 2024Physical Simulation of microstructures generated by wire-arc directed energy deposition
- 2023Effect of wire-arc directed energy deposition on the microstructural formation and age-hardening response of the Mg-9Al-1Zn (AZ91) alloycitations
- 2023Wire arc additive manufacturing of light metals: From experimental investigation to numerical process simulation and microstructural modelingcitations
- 2023Effects on Microstructure and Mechanical Properties of the Addition of Co, Cr, and Fe to the Eutectoid System Ti-6.5Cu
- 2023Effects of Fe and Al additions on the eutectoid transformation and its transformation products in Ti-5.9(wt.%)Cu
- 2023High-temperature microstructure evolution of an advanced intermetallic nano-lamellar γ-TiAl-based alloy and associated diffusion processescitations
- 2023High-temperature microstructure evolution of an advanced intermetallic nano-lamellar γ-TiAl-based alloy and associated diffusion processescitations
- 2023Titanium MMCs With Enhanced Specific Young’s Modulus via Powder Hot Extrusion
- 2023Microstructure and Mechanical Properties of an Advanced Ag-Microalloyed Aluminum Crossover Alloy Tailored for Wire-Arc Directed Energy Depositioncitations
- 2022Quench rate sensitivity of age-hardenable Al-Zn-Mg-Cu alloys with respect to the Zn/Mg ratio: An in situ SAXS and HEXRD studycitations
- 2022Characterisation of structural modifications on cold-formed AA2024 substrates by wire arc additive manufacturingcitations
- 2022Quench rate sensitivity of age-hardenable Al-Zn-Mg-Cu alloys with respect to the Zn/Mg ratiocitations
- 2022Drahtbasierte additive Fertigung der Luftfahrtlegierung AA2024
- 2021Microstructure evolution induced by the intrinsic heat treatment occurring during wire-arc additive manufacturing of an Al-Mg-Zn-Cu crossover alloycitations
- 2020High-temperature phenomena in an advanced intermetallic nano-lamellar γ-TiAl-based alloy. Part Icitations
- 2020An Advanced TiAl Alloy for High-Performance Racing Applicationscitations
- 2019The creep behavior of a fully lamellar γ-TiAl based alloycitations
- 2019In situ and atomic-scale investigations of the early stages of γ precipitate growth in a supersaturated intermetallic Ti-44Al-7Mo (at.%) solid solutioncitations
- 2019Formation of "carbide-free zones" resulting from the interplay of C redistribution and carbide precipitation during bainitic transformationcitations
- 2018Intermetallicscitations
- 2016Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomographycitations
- 2015Carbon distribution in multi-phase γ-TiAl based alloys and its influence on mechanical properties and phase formationcitations
- 2014Distribution of alloying elements within the constituent phases of a C-containing gamma-TiAl based alloy studied by atom probe tomographycitations
Places of action
Organizations | Location | People |
---|
article
High-temperature phenomena in an advanced intermetallic nano-lamellar γ-TiAl-based alloy. Part I
Abstract
<p>Intermetallic γ-TiAl based alloys have found applications in the low-pressure turbine of aircraft engines as well as in the turbocharger unit of automotive engines. However, these light-weight alloys must still be improved, through micro-alloying and tailoring the microstructure, to increase their creep resistance and consequently their maximum working temperature. In this work, a fully nano-lamellar advanced γ-TiAl based alloy doped with small amounts of C and Si is investigated in order to gain a deeper understanding of the atomic mobility mechanisms taking place at high temperature, thus controlling the creep properties. The study was approached through internal friction measurements up to 1223 K. We demonstrate that C has a notable influence on Ti diffusion in α<sub>2</sub> phase, leading to an increase of the activation energy for Ti diffusion, which is assessed at ΔE<sub>Ti</sub>(α<sub>2</sub>)=0.32 eV per at% C. An atomic model for the relaxation process is proposed capable to explain this phenomenon. An additional internal friction peak, which, up to now, remained hidden by the high temperature background, was observed in this nano-lamellar TiAl alloy and analyzed through a careful de-convolution of the internal friction spectra. This new relaxation process, with activation energy of 3.70 eV, is attributed to the short distance diffusion of Al atoms in the γ-TiAl lattice. A novel concept of stress-induced cell-lattice reorientation is proposed to explain this relaxation. Finally, a new experimental method to analyze the high temperature internal friction background, which is closely related to the creep behavior, was developed to study the fully nano-lamellar microstructure, whose high temperature background exhibits the highest activation energy ever measured in a γ-TiAl based alloy.</p>