People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ding, Hui
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2025Hierarchy of defects in near-Σ5 tilt grain boundaries in copper studied by length-scale bridging electron microscopy
- 2022Evidence for antipolar displacements in NaNbO3 thin filmscitations
- 2021Domain morphology of newly designed lead-free antiferroelectric NaNbO3-SrSnO3 ceramicscitations
- 2021Influence of Defects on the Schottky Barrier Height at BaTiO3/RuO2 Interfacescitations
- 2020Electric-field-induced antiferroelectric to ferroelectric phase transition in polycrystalline NaNbO3citations
- 2020Direct 3D Printing of Graphene Using Capillary Suspensionscitations
Places of action
Organizations | Location | People |
---|
article
Electric-field-induced antiferroelectric to ferroelectric phase transition in polycrystalline NaNbO3
Abstract
<p>Electric-field-induced phase transitions are the most important characteristics of antiferroelectric materials. However, in several prototype antiferroelectrics, these transitions are irreversible and the origin of this behavior is poorly understood. This prevents their widespread use, for example, in energy storage and memory applications. Here, we investigated the antiferroelectric-ferroelectric phase transitions in polycrystalline NaNbO<sub>3</sub>, a material recently suggested as the basis for lead-free antiferroelectrics with high energy storage densities. An irreversible transition from the antiferroelectric state to a new state showing macroscopic piezoelectricity (d<sub>33</sub>=35 pC/N) was induced at 11.6 kV/mm (room temperature, 1 Hz), accompanied by a 33% drop in permittivity. Microscopically, a change from a translational antiferroelectric domain structure to a wedge-shaped ferroelectric domain structure was observed using transmission electron microscopy. <sup>23</sup>Na solid-state nuclear magnetic resonance allowed for a detailed study of the local structure and revealed pure antiferroelectric and coexisting antiferroelectric/ferroelectric nature of the samples before and after the application of an electric field, respectively. Interestingly, despite the large electric fields applied, only 50±5% of the material underwent the antiferroelectric-ferroelectric phase transition, which was related to the material´s microstructure. The temperature- and frequency-dependence of the phase transition was studied and compared to the behavior observed in lead-based antiferroelectric systems.</p>