Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hart, Judy Nancy

  • Google
  • 1
  • 6
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Interfacial origins of visible-light photocatalytic activity in ZnS–GaP multilayers6citations

Places of action

Chart of shared publication
He, Jiaqing
1 / 2 shared
Valanoor, Nagarajan
1 / 7 shared
Webster, Richard Francis
1 / 1 shared
Park, Collin Keon Young
1 / 1 shared
Gharavi, Paria Sadat Musavi
1 / 1 shared
Xie, Lin
1 / 2 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • He, Jiaqing
  • Valanoor, Nagarajan
  • Webster, Richard Francis
  • Park, Collin Keon Young
  • Gharavi, Paria Sadat Musavi
  • Xie, Lin
OrganizationsLocationPeople

article

Interfacial origins of visible-light photocatalytic activity in ZnS–GaP multilayers

  • Hart, Judy Nancy
  • He, Jiaqing
  • Valanoor, Nagarajan
  • Webster, Richard Francis
  • Park, Collin Keon Young
  • Gharavi, Paria Sadat Musavi
  • Xie, Lin
Abstract

The origins of recently reported visible-light photoelectrochemical activity in ZnS–GaP (ZG) multilayer films are investigated using aberration-corrected scanning transmission electron microscopy (STEM). It is revealed that the multilayers carry a large volume fraction of defects, specifically stacking faults and twins, at the interfaces. The defects act as excellent channels for diffusion. For each ZG interface, a ∼5 nm-interdiffused region with an effective chemical composition of a ZnS–GaP solid solution is observed. Previous theoretical calculations have found that ZnS–GaP solid solutions possess a lower band gap than either GaP or ZnS and thus are expected to have better visible-light photo-activity. These findings are thus able to explain the observed commensurate increase in the visible-light photoelectrochemical response with increasing number of ZG layers. This work suggests that interfaces with intentionally designed lattice imperfections and/or intentionally driven interdiffusion leading to local solid solution formation provide a new materials design strategy for achieving efficient visible-light photo-activity.

Topics
  • impedance spectroscopy
  • chemical composition
  • transmission electron microscopy
  • defect
  • stacking fault
  • interdiffusion