Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Petegem, S. Van

  • Google
  • 1
  • 5
  • 35

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019In situ characterization of work hardening and springback in grade 2 α-titanium under tensile load35citations

Places of action

Chart of shared publication
Connolley, T.
1 / 38 shared
Swygenhoven, H. Van
1 / 8 shared
Šmíd, M.
1 / 33 shared
Sofinowski, K.
1 / 2 shared
Rahimi, Salah
1 / 44 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Connolley, T.
  • Swygenhoven, H. Van
  • Šmíd, M.
  • Sofinowski, K.
  • Rahimi, Salah
OrganizationsLocationPeople

article

In situ characterization of work hardening and springback in grade 2 α-titanium under tensile load

  • Connolley, T.
  • Swygenhoven, H. Van
  • Petegem, S. Van
  • Šmíd, M.
  • Sofinowski, K.
  • Rahimi, Salah
Abstract

Plastic effects during sheet metal forming can lead to undesirable distortions in formed components. Here, the three-stage work hardening and plastic strain recovery ("springback") in a cold-rolled, α-phase commercially pure titanium is examined. Interrupted standard tensile tests with in situ x-ray diffraction and quasi-in situ electron backscatter diffraction show that twinning plays a minor role in both of these phenomena. The experiments give evidence that the observed work hardening plateau is the result of an abrupt activation and multiplication of 〈c+a〉 slip and a subsequent redistribution of load between grain families. The springback can be attributed to inelastic backwards motion and annihilation of dislocations, driven by backstresses from dislocation-based hardening during loading. The peak broadening behavior, observed by x-ray diffraction, suggests that the internal stress state is highest in the rolling direction, resulting in consistently higher springback magnitude along this direction.

Topics
  • impedance spectroscopy
  • polymer
  • grain
  • phase
  • x-ray diffraction
  • experiment
  • dislocation
  • titanium
  • forming
  • activation
  • electron backscatter diffraction
  • commercially pure titanium