People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schön, Cláudio G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2020Mechanical properties of homogeneous and nitrogen graded TiN thin filmscitations
- 2019Thermodynamics of an austenitic stainless steel (AISI-348) under in situ TEM heavy ion irradiationcitations
- 2019Radiation-induced precipitation with concurrent bubbles formation in an austenitic stainless steel (AISI-348)citations
- 2019Experimental investigation of phase equilibria in the Nb–Ni–Si refractory alloy system at 1073 Kcitations
- 2019Investigating sluggish diffusion in a concentrated solid solution alloy using ion irradiation with in situ TEMcitations
- 2018Influence of substrate stiffness and of PVD parameters on the microstructure and tension fracture characteristics of TiN thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Thermodynamics of an austenitic stainless steel (AISI-348) under in situ TEM heavy ion irradiation
Abstract
<p>The stability of the face-centred cubic austenite (γ-Fe) phase in a commercial stainless steel (AISI-348) was investigated through in situ transmission electron microscopy (TEM) with heavy ion irradiation at 1073 K up to a fluence of 1.3×10<sup>17</sup> ions⋅cm<sup>−2</sup> (corresponding to a dose of 46 dpa). The γ-Fe phase was observed to decompose at a fluence of around 7.8×10<sup>15</sup> ions⋅cm<sup>−2</sup> (3 dpa) when a new phase nucleated and grew upon increasing irradiation dose. Scanning transmission electron microscopy (STEM) with energy dispersive X-ray (EDX) spectroscopy and multivariate statistical analysis (MVSA) were used to characterise the irradiated specimens. The combination of such experimental techniques with calculated equilibrium phase diagrams using the CALPHAD method led to the conclusion that the new phase formed upon irradiation is the body-centred cubic Cr-rich α' phase. At the nanoscale, precipitation of M<sub>23</sub>C<sub>6</sub> (τ-carbide) was also observed. The results indicate that ion irradiation can assist the austenitic stainless steel to reach a non-equilibrium state similar to a calculated equilibrium state observed at lower temperatures.</p>