People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Atkinson, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023The role of hydrides and precipitates on the strain localisation behaviour in a zirconium alloycitations
- 2023The role of hydrides and precipitates on the strain localisation behaviour in a zirconium alloycitations
- 2022A novel method for radial hydride analysis in zirconium alloys:HAPPycitations
- 2022A novel method for radial hydride analysis in zirconium alloyscitations
- 2022Slip activity during low-stress cold creep deformation in a near-α titanium alloycitations
- 2022Slip activity during low-stress cold creep deformation in a near-α titanium alloycitations
- 2021The Effect of Loading Direction on Slip and Twinning in an Irradiated Zirconium Alloycitations
- 2021Understanding the role of local texture variation on slip activity in a two-phase titanium alloycitations
- 2021Understanding the role of local texture variation on slip activity in a two-phase titanium alloycitations
- 2020A statistical study of the relationship between plastic strain and lattice misorientation on the surface of a deformed Ni-based superalloy
- 2020Comparison of sub-grain scale digital image correlation calculated using commercial and open-source software packagescitations
- 2020Measurement of local plastic strain during uniaxial reversed loading of nickel alloy 625
- 2019Characterisation of irradiation enhanced strain localisation in a zirconium alloycitations
- 2019Characterisation of irradiation enhanced strain localisation in a zirconium alloycitations
- 2019Identification of active slip mode in a hexagonal material by correlative scanning electron microscopycitations
- 2019Identification of active slip mode in a hexagonal material by correlative scanning electron microscopycitations
- 2019Comparing local deformation measurements to predictions from crystal plasticity during reverse loading of an aerospace alloy
- 2018On the ductility of alpha titanium: The effect of temperature and deformation modecitations
- 2018On the ductility of alpha titanium: The effect of temperature and deformation modecitations
Places of action
Organizations | Location | People |
---|
article
Identification of active slip mode in a hexagonal material by correlative scanning electron microscopy
Abstract
Metals with a hexagonal close packed structure can deform by several different slip modes with different Critical Resolved Shear Stresses, which provides a great deal of complexity when considering mechanical performance of Mg, Ti and Zr alloys. Hence, an accurate but also statistically meaningful analysis of active slip systems and their contribution to plasticity is of great importance for the understanding of deformation mechanism. In the present study, a correlative scanning electron microscopy-based method of slip trace analysis has been utilised to provide statistical, accurate information of slip behaviour in a weakly textured Ti-6Al-4V alloy with a plastic strain of ~2%. This is achieved through grain orientation mapping by Electron Backscatter Diffraction and strain mapping by High Resolution Digital Image Correlation. The initial identification of slip mode was performed by comparing the slip trace captured in the high-resolution effective shear strain map with all theoretical slip planes with an angle acceptance criterion of ±5°. Ambiguity in slip mode identification was further resolved using the Relative Displacement Ratio method, which enables the determination of the Burgers vector directly from the displacement data. The correctness of the identified slip modes has been confirmed by detailed dislocation analysis using Bright Field Scanning Transmission Electron Microscopy on thin foils extracted from specific grains employing Focused Ion Beam. This detailed investigation demonstrates the robustness of the slip trace analysis based on grain orientation and high-resolution strain mapping.