People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kabir, Ahsanul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Assessment of High-Temperature Oxidation Properties of 316L Stainless Steel Powder and Sintered Porous Supports for Potential Solid Oxide Cells Applicationscitations
- 2024Non-classical electrostriction in calcium-doped cerium oxide ceramicscitations
- 2024Non-classical electrostriction in calcium-doped cerium oxide ceramicscitations
- 2024Enhanced Mechanical and Electromechanical Properties of Compositionally Complex Zirconia Zr 1- x (Gd 1/5 Pr 1/5 Nd 1/5 Sm 1/5 Y 1/5 ) x O 2-δ Ceramicscitations
- 2024Enhanced Mechanical and Electromechanical Properties of Compositionally Complex Zirconia Zr1-x(Gd1/5Pr1/5Nd1/5Sm1/5Y1/5)xO2-δ Ceramicscitations
- 2021Low-temperature synthesis of bismuth titanate by modified citrate amorphous methodcitations
- 2021Low-temperature synthesis of bismuth titanate by modified citrate amorphous methodcitations
- 2021Gigantic electro-chemo-mechanical properties of nanostructured praseodymium doped ceriacitations
- 2021Gigantic electro-chemo-mechanical properties of nanostructured praseodymium doped ceriacitations
- 2020Effect of Cold Sintering Process (CSP) on the Electro-Chemo-Mechanical Properties of Gd-doped Ceria (GDC)citations
- 2020Steady Non-classical Giant Electrostriction in Calcium Doped Cerium Oxide
- 2020Enhanced Electromechanical Response in Sm and Nd Co-doped Ceriacitations
- 2020The role of oxygen defects on the electro-chemo-mechanical properties of highly defective gadolinium doped ceriacitations
- 2020Tuning the electro-chemo-mechanical properties in defective cerium oxides
- 2020Non-classical electrostrictive response in bulk ceria: tailoring by microstructure and defect chemistry
- 2020Tunable Giant Electromechanical Properties in Defective Co-doped Ceria Systems
- 2019Effect of oxygen defects blocking barriers on gadolinium doped ceria (GDC) electro-chemo-mechanical propertiescitations
- 2019Microstructure Forging of Electromechanically Active Bulk Ceria
Places of action
Organizations | Location | People |
---|
article
Effect of oxygen defects blocking barriers on gadolinium doped ceria (GDC) electro-chemo-mechanical properties
Abstract
Some oxygen defective metal oxides, such as cerium and bismuth oxides, have recently shown exceptional electrostrictive properties that are even superior to the best performing lead-based electrostrictors, e.g. lead-magnesium-niobates (PMN). Compared to piezoelectric ceramics, electromechanical mechanisms of such materials do not depend on crystalline symmetry but on the concentration of oxygen vacancy (V Ö ) in the lattice. In this work, we investigate for the first time the role of oxygen defects configuration on the electro-chemo-mechanical properties. This is achieved by tuning the oxygen defects blocking barrier density in polycrystalline gadolinium doped ceria with known oxygen vacancy concentration, Ce 0.9 Gd 0.1 O 2- δ , δ = 0.05. Nanometric starting powders of ca. ∼12 nm are sintered in different conditions, including field assisted spark plasma sintering (SPS), fast firing and conventional method at high temperatures. These approaches allow controlling grain size and Gd-dopant diffusion, i.e. via thermally driven solute drag mechanism. By correlating the electro-chemo-mechanical properties, we show that oxygen vacancy distribution in the materials plays a key role in ceria electrostriction, overcoming the expected contributions from grain size and dopant concentration.