People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tunes, Matheus Araujo
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024Unraveling the potential of Cu addition and cluster hardening in Al-Mg-Si alloyscitations
- 2024Comparative analysis of experimental techniques for microstructural characterization of novel nanostructured aluminium alloyscitations
- 2024Challenges in developing materials for microreactorscitations
- 2023Orientation dependence of the effect of short-range ordering on the plastic deformation of a medium entropy alloycitations
- 2023Author Correction: A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environmentscitations
- 2023In situ transmission electron microscopy as a toolbox for the emerging science of nanometallurgycitations
- 2023Precipitation behaviour in AlMgZnCuAg crossover alloy with coarse and ultrafine grainscitations
- 2023A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environmentscitations
- 2022Design of oxygen-doped TiZrHfNbTa refractory high entropy alloys with enhanced strength and ductilitycitations
- 2022MEMS-Based in situ electron-microscopy investigation of rapid solidification and heat treatment on eutectic Al-Cucitations
- 2021Synergistic alloy design concept for new high-strength Al–Mg–Si thick plate alloyscitations
- 2021Deviating from the pure MAX phase concept: Radiation-tolerant nanostructured dual-phase Cr2AlC
- 2021Two step-ageing of 7xxx series alloys with an intermediate warm-forming step
- 2021Giant hardening response in AlMgZn(Cu) alloyscitations
- 2020Prototypic Lightweight Alloy Design for Stellar-Radiation Environmentscitations
- 2020Mechanical properties of homogeneous and nitrogen graded TiN thin filmscitations
- 2020Age-hardening response of AlMgZn alloys with Cu and Ag additionscitations
- 2019Microstructural origins of the high mechanical damage tolerance of NbTaMoW refractory high-entropy alloy thin filmscitations
- 2019Thermodynamics of an austenitic stainless steel (AISI-348) under in situ TEM heavy ion irradiationcitations
- 2019Site specific dependencies of hydrogen concentrations in zirconium hydridescitations
- 2019A candidate accident tolerant fuel system based on a highly concentrated alloy thin filmcitations
- 2019Understanding amorphization mechanisms using ion irradiation in situ a TEM and 3D damage reconstructioncitations
- 2019New Microscope and Ion Accelerators for Materials Investigations (MIAMI-2) system at the University of Huddersfieldcitations
- 2019Experimental investigation of phase equilibria in the Nb–Ni–Si refractory alloy system at 1073 Kcitations
- 2019Thermal stability and irradiation response of nanocrystalline CoCrCuFeNi high-entropy alloycitations
- 2019A Transmission Electron Microscopy study of the neutron-irradiation response of Ti-based MAX phases at high temperaturescitations
- 2019Investigating sluggish diffusion in a concentrated solid solution alloy using ion irradiation with in situ TEMcitations
- 2018Influence of substrate stiffness and of PVD parameters on the microstructure and tension fracture characteristics of TiN thin filmscitations
- 2018Energetic particle irradiation study of TiN coatingscitations
- 2018Synthesis and characterisation of high-entropy alloy thin films as candidates for coating nuclear fuel cladding alloyscitations
- 2017Effect of He implantation on the microstructure of zircaloy-4 studied using in situ TEMcitations
- 2016Preliminary assessment of the irradiation behaviour of the FeCrMnNi High-Entropy Alloy for nuclear applications
- 2015Influence of Zr, Mo and Nb on microstructure of ternary Uranium alloys
- 2014Comparative framework of zirconium alloys and austenitic stainless steels structural integrity under neutron irradiation
Places of action
Organizations | Location | People |
---|
article
A Transmission Electron Microscopy study of the neutron-irradiation response of Ti-based MAX phases at high temperatures
Abstract
Mn+1AXn phases, or simply MAX phases, are unique nanolayered materials that have been attracting the attention of the nuclear materials community worldwide due to the recent reports of superior radiation resistance compared to conventional ceramics. However, the knowledge and understanding of their response to neutron irradiation is fairly limited, in particular at high temperatures where MAX phases are expected to have high thermodynamic phase stability. In this paper, a complete and extensive study of neutron-irradiation effects at high temperatures on Ti-based MAX phases is presented. The MAX phases Ti3SiC2 and Ti2AlC were irradiated at 1273 K in the High-Flux Isotope Reactor located at the Oak Ridge National Laboratory up to 10 displacement per atom (dpa). Post-irradiation characterisation was performed within a Transmission Electron Microscope on both irradiated and pristine samples. Upon increasing the dose from 2 to 10 dpa, the areal density of black-spots in the Ti2AlC was observed to significantly increase while in the Ti3SiC2, disordered dislocation networks were observed. Regarding the Ti3SiC2, black-spot damage was observed to be concentrated within secondary phases, but absent in the matrix. Dislocation lines and loops were observed at both 2 and 10 dpa. The dislocation loops were identified to be of a type. At 2 dpa, stacking faults were observed in both materials, but were absent at 10 dpa. Cavities have also been observed, although no relationship with between size and dose was obtained. Finally, at 10 dpa, both MAX phases exhibited evidences of phase decomposition and irradiation-induced segregation. The presented results shed light on a very complex chain of radiation-induced defects in neutron-induced microstructures in both materials at high temperatures, and provide information that will enable better design of more radiation tolerant materials in the future.