Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Leitner, Alexander

  • Google
  • 2
  • 7
  • 92

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Thermally activated deformation mechanisms and solid solution softening in W-Re alloys investigated via high temperature nanoindentation46citations
  • 2019Rate limiting deformation mechanisms of bcc metals in confined volumes46citations

Places of action

Chart of shared publication
Maier-Kiener, Verena
2 / 24 shared
Kappacher, Johann
1 / 4 shared
Clemens, Helmut
1 / 120 shared
Kiener, Daniel
2 / 39 shared
Pippan, Reinhard
1 / 48 shared
Fritz, Reinhard
1 / 1 shared
Alfreider, Markus
1 / 21 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Maier-Kiener, Verena
  • Kappacher, Johann
  • Clemens, Helmut
  • Kiener, Daniel
  • Pippan, Reinhard
  • Fritz, Reinhard
  • Alfreider, Markus
OrganizationsLocationPeople

article

Rate limiting deformation mechanisms of bcc metals in confined volumes

  • Pippan, Reinhard
  • Fritz, Reinhard
  • Maier-Kiener, Verena
  • Kiener, Daniel
  • Leitner, Alexander
  • Alfreider, Markus
Abstract

<p>The influence of microstructure on the strength scaling behaviour of ultrafine-grained bcc metals is investigated by scale-bridging experiments spanning four orders of length on tungsten and chromium. By performing macroscopic compression experiments, nanoindentation and in-situ micro-compression tests in a scanning electron microscope, the plastically deformed volume was thoroughly reduced until a transition from bulk behaviour to single crystalline deformation characteristics was achieved. The stress-strain behaviour and local sample deformation characteristics were related to apparent deformation mechanisms established for polycrystalline bcc metals. The influence of small dimensions, interfaces and free surfaces on the deformation behaviour is considered with respect to the single crystal situation. The increasing fraction of free surfaces in small volumes explicitly alters the strength scaling behaviour in dependence of the intergranular dislocation accumulation processes. Furthermore, thermally activated deformation was analysed based on rate- and temperature-dependent properties, such as strain-rate sensitivity and activation volume. To mechanistically interpret this data, a dislocation based model predicting the temperature dependent activation volume was developed. We find that thermally activated kinks control the rate dependent properties below the critical temperature for all length scales and microstructure states.</p>

Topics
  • impedance spectroscopy
  • surface
  • single crystal
  • chromium
  • experiment
  • strength
  • stress-strain behavior
  • nanoindentation
  • dislocation
  • compression test
  • activation
  • deformation mechanism
  • tungsten
  • critical temperature