Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fang, Haixing

  • Google
  • 6
  • 13
  • 81

European Synchrotron Radiation Facility

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2021A novel 3D mixed-mode multigrain model with efficient implementation of solute drag applied to austenite-ferrite phase transformations in Fe-C-Mn alloys23citations
  • 2019Self healing of creep damage in iron-based alloys by supersaturated tungsten27citations
  • 2018Analysis of the grain size evolution for ferrite formation in Fe-C-Mn steels using a 3D model under a mixed-mode interface condition13citations
  • 2018In Situ 3D Neutron Depolarization Study of the Transformation Kinetics and Grain Size Evolution During Cyclic Partial Austenite-Ferrite Phase Transformations in Fe-C-Mn Steels5citations
  • 2018Modelling study on the three-dimensional neutron depolarisation response of the evolving ferrite particle size distribution during the austenite–ferrite phase transformation in steels1citations
  • 2017Linking Surface Precipitation in Fe-Au Alloys to Its Self-healing Potential During Creep Loading12citations

Places of action

Chart of shared publication
Van Dijk, Niels
6 / 11 shared
Brück, Ekkes
2 / 8 shared
Sloof, Willem G.
1 / 11 shared
Herbig, M.
1 / 33 shared
Tichelaar, F. D.
1 / 43 shared
Cloetens, P.
1 / 15 shared
Szymanski, N.
1 / 1 shared
Kwakernaak, C.
1 / 20 shared
Balachandran, S.
1 / 2 shared
Versteylen, C. D.
1 / 3 shared
Mecozzi, M. G.
1 / 9 shared
Sun, W. W.
1 / 2 shared
Hutchinson, C. R.
1 / 13 shared
Chart of publication period
2021
2019
2018
2017

Co-Authors (by relevance)

  • Van Dijk, Niels
  • Brück, Ekkes
  • Sloof, Willem G.
  • Herbig, M.
  • Tichelaar, F. D.
  • Cloetens, P.
  • Szymanski, N.
  • Kwakernaak, C.
  • Balachandran, S.
  • Versteylen, C. D.
  • Mecozzi, M. G.
  • Sun, W. W.
  • Hutchinson, C. R.
OrganizationsLocationPeople

article

Self healing of creep damage in iron-based alloys by supersaturated tungsten

  • Brück, Ekkes
  • Sloof, Willem G.
  • Fang, Haixing
  • Herbig, M.
  • Tichelaar, F. D.
  • Cloetens, P.
  • Szymanski, N.
  • Kwakernaak, C.
  • Van Dijk, Niels
  • Balachandran, S.
  • Versteylen, C. D.
Abstract

When metals are mechanically loaded at elevated temperatures for extended periods of time, creep damage will occur in the form of cavities at grain boundaries. In the present experiments it is demonstrated that in binary iron-tungsten alloys creep damage can be self healed by selective precipitation of a W-rich phase inside these cavities. Using synchrotron X-ray nano-tomography the simultaneous evolution of creep cavitation and precipitation is visualized in 3D images with a resolution down to 30 nm. The degree of filling by precipitation is analysed for a large collection of individual creep cavities. Two clearly different types of behaviour are observed for isolated and linked cavities, where the isolated cavities can be filled completely, while the linked cavities continue to grow. The demonstrated self-healing potential of tungsten in iron-based metal alloys provides a new perspective on the role of W in high-temperature creep-resistant steels. ; Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. ; Novel Aerospace Materials ; RST/Fundamental Aspects of Materials and Energy ; (OLD) MSE-1 ; QN/Afdelingsbureau

Topics
  • impedance spectroscopy
  • grain
  • phase
  • experiment
  • tomography
  • steel
  • precipitation
  • iron
  • tungsten
  • creep
  • tungsten alloy