Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nakanishi, Kenichi

  • Google
  • 5
  • 32
  • 35

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2020Understanding metal organic chemical vapour deposition of monolayer WS2: the enhancing role of Au substrate for simple organosulfur precursors.citations
  • 2020Graphene-passivated nickel as an efficient hole-injecting electrode for large area organic semiconductor devices3citations
  • 2020Understanding metal organic chemical vapour deposition of monolayer WS<sub>2</sub>: the enhancing role of Au substrate for simple organosulfur precursors.citations
  • 2018Compressive Behavior and Failure Mechanisms of Freestanding and Composite 3D Graphitic Foams11citations
  • 2017Chemical vapour deposition of freestanding sub-60 nm graphene gyroids21citations

Places of action

Chart of shared publication
Held, Georg
2 / 11 shared
Fan, Ye
2 / 11 shared
Stewart, J. Callum
2 / 2 shared
Weatherup, Robert S.
1 / 7 shared
Ferrer, Pilar
2 / 9 shared
Burton, Oliver J.
2 / 9 shared
Veigang-Radulescu, Vlad P.
2 / 2 shared
Pollard, Andrew J.
2 / 9 shared
Swallow, Jack En
2 / 3 shared
Hofmann, Stephan
5 / 46 shared
Dearle, Alice E.
1 / 1 shared
Mizuta, Ryo
3 / 6 shared
Alexander-Webber, Jack A.
1 / 10 shared
Brennan, Barry
2 / 6 shared
Martin, Marie-Blandine
1 / 11 shared
Friend, Richard, H.
1 / 549 shared
Aria, Adrianus
1 / 1 shared
Alexander-Webber, Jack Allen
2 / 2 shared
Di Nuzzo, Daniele
1 / 9 shared
Weatherup, Rs
4 / 28 shared
Dearle, Alice
1 / 1 shared
Fleck, Norman A.
1 / 15 shared
Berwind, Matthew
1 / 1 shared
Eberl, Christoph
1 / 6 shared
Aria, Adrianus I.
1 / 2 shared
Divitini, Giorgio
1 / 37 shared
Aria, Ai
1 / 1 shared
Kidambi, Pr
1 / 3 shared
Cebo, Tomasz
1 / 1 shared
Steiner, Ullrich
1 / 42 shared
Dolan, James A.
1 / 5 shared
Ducati, Caterina
1 / 34 shared
Chart of publication period
2020
2018
2017

Co-Authors (by relevance)

  • Held, Georg
  • Fan, Ye
  • Stewart, J. Callum
  • Weatherup, Robert S.
  • Ferrer, Pilar
  • Burton, Oliver J.
  • Veigang-Radulescu, Vlad P.
  • Pollard, Andrew J.
  • Swallow, Jack En
  • Hofmann, Stephan
  • Dearle, Alice E.
  • Mizuta, Ryo
  • Alexander-Webber, Jack A.
  • Brennan, Barry
  • Martin, Marie-Blandine
  • Friend, Richard, H.
  • Aria, Adrianus
  • Alexander-Webber, Jack Allen
  • Di Nuzzo, Daniele
  • Weatherup, Rs
  • Dearle, Alice
  • Fleck, Norman A.
  • Berwind, Matthew
  • Eberl, Christoph
  • Aria, Adrianus I.
  • Divitini, Giorgio
  • Aria, Ai
  • Kidambi, Pr
  • Cebo, Tomasz
  • Steiner, Ullrich
  • Dolan, James A.
  • Ducati, Caterina
OrganizationsLocationPeople

article

Compressive Behavior and Failure Mechanisms of Freestanding and Composite 3D Graphitic Foams

  • Nakanishi, Kenichi
  • Fleck, Norman A.
  • Berwind, Matthew
  • Eberl, Christoph
  • Aria, Adrianus I.
  • Hofmann, Stephan
  • Weatherup, Rs
Abstract

Open-cell graphitic foams were fabricated by chemical vapor deposition using nickel templates and their compressive responses were measured over a range of relative densities. The mechanical response required an interpretation in terms of a hierarchical micromechanical model, spanning 3 distinct length scales. The power law scaling of elastic modulus and yield strength versus relative density suggests that the cell walls of the graphitic foam deform by bending. The length scale of the unit cell of the foam is set by the length of the struts comprising the cell wall, and is termed level I. The cell walls comprise hollow triangular tubes, and bending of these strut-like tubes involves axial stretching of the tube walls. This length scale is termed level II. In turn, the tube walls form a wavy stack of graphitic layers, and this waviness induces interlayer shear of the graphitic layers when the tube walls are subjected to axial stretch. The thickness of the tube wall defines the third length scale, termed level III. We show that the addition of a thin, flexible ceramic Al2O3 scaffold stiffens and strengthens the foam, yet preserves the power law scaling. The hierarchical model gives fresh insight into the mechanical properties of foams with cell walls made from emergent 2D layered solids.

Topics
  • density
  • impedance spectroscopy
  • nickel
  • strength
  • layered
  • composite
  • yield strength
  • ceramic
  • chemical vapor deposition