People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Poulsen, Henning, F.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 20243D microstructural and strain evolution during the early stages of tensile deformationcitations
- 2024Microstructure and stress mapping in 3D at industrially relevant degrees of plastic deformationcitations
- 2023Exploring 4D microstructural evolution in a heavily deformed ferritic alloycitations
- 2023Inferring the probability distribution over strain tensors in polycrystals from diffraction based measurementscitations
- 2022High-resolution 3D X-ray diffraction microscopy: 3D mapping of deformed metal microstructurescitations
- 2022Multiscale Exploration of Texture and Microstructure Development in Recrystallization Annealing of Heavily Deformed Ferritic Alloyscitations
- 2022Multiscale characterisation of strains in semicrystalline polymers
- 20224D microstructural evolution in a heavily deformed ferritic alloycitations
- 2020Grain boundary mobilities in polycrystalscitations
- 2019Fast and quantitative 2D and 3D orientation mapping using Raman microscopycitations
- 2018Three-dimensional grain growth in pure iron. Part I. statistics on the grain levelcitations
- 2017Determining material parameters using phase-field simulations and experimentscitations
- 2017Ultra-low-angle boundary networks within recrystallizing grainscitations
- 2015Injection molded polymeric hard X-ray lensescitations
- 2014High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structurescitations
- 2012X-ray diffraction contrast tomography (DCT) system, and an X-ray diffraction contrast tomography (DCT) method
- 2011On the Use of Laguerre Tessellations for Representations of 3D Grain Structurescitations
- 2011Grain-resolved elastic strains in deformed copper measured by three-dimensional X-ray diffractioncitations
- 2011Three-Dimensional Orientation Mapping in the Transmission Electron Microscopecitations
- 2009Structured scintillators for X-ray imaging with micrometre resolutioncitations
- 2009New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imagingcitations
- 2009Measuring the elastic strain of individual grains in polycrystalline materials
- 2008A high-spatial-resolution three-dimensional detector array for 30-200 keV X-rays based on structured scintillatorscitations
- 2004Simultaneous measurement of the strain tensor of 10 individual grains embedded in an Al tensile samplecitations
- 2004Measurement of the components of plastic displacement gradients in three dimensionscitations
- 2004Metal Microstructures in Four Dimensions
- 20023DXRD microscopy - a comparison with neutron diffractioncitations
- 2000A high energy microscope for local strain measurements within bulk materials
Places of action
Organizations | Location | People |
---|
article
Three-dimensional grain growth in pure iron. Part I. statistics on the grain level
Abstract
Grain evolution in pure iron is determined in three dimensions using diffraction contrast tomography at a synchrotron source. During annealing for 75 min at 800°C, the evolution of initially 1327 grains is quantified as a function of 15 time-steps. A comprehensive statistical analysis is provided based on the equivalent radius, the number of faces and the mean width parameters of the grains. We introduce analytical relations between these parameters, validate them, and discuss their physical meaning. While the sample is fully recrystallized, the growth is found not to be self-similar, as evidenced in changes in the distributions of normalized grain size and number of faces per grain. More importantly, a strong decrease in the slope of the growth rate over the mean width of grain faces is observed, indicating a slowdown of grain growth. The data is used to determine the applicability of the isotropic MacPherson-Srolovitz theory to an anisotropic material such as iron. Geometrical properties that are averaged over the entire grain ensemble are well described by the model, but the properties and evolution of the individual grains exhibit substantial scatter.