People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Roscow, James
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Porous Structure Enhances the Longitudinal Piezoelectric Coefficient and Electromechanical Coupling Coefficient of Lead-Free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3citations
- 2024Porous structure enhances the longitudinal piezoelectric coefficient and electromechanical coupling coefficient of lead‐free (Ba 0.85 Ca 0.15 )(Zr 0.1 Ti 0.9 )O 3citations
- 2024Temperature-Dependent Ferroelectric Properties and Aging Behavior of Freeze-Cast Bismuth Ferrite-Barium Titanate Ceramicscitations
- 2024Ferroelectric-enhanced batteries for rapid charging and improved long-term performancecitations
- 2024Temperature-Dependent Ferroelectric Properties and Aging Behavior of Freeze-Cast Bismuth Ferrite–Barium Titanate Ceramicscitations
- 2024Exploring Lead-Free Materials for Screen-Printed Piezoelectric Wearable Devicescitations
- 2023The unusual case of plastic deformation and high dislocation densities with the cold sintering of the piezoelectric ceramic K0.5Na0.5NbO3citations
- 2022Twelve modified figures of merit of 2–2-type composites based on relaxor-ferroelectric single crystalscitations
- 2022Innovative piezo-active composites and their structure - Property relationshipscitations
- 2022Residual stress and domain switching in freeze cast porous barium titanatecitations
- 2022Ultrasonic Transducers made from Freeze-Cast Porous Piezoceramicscitations
- 2019Orienting anisometric pores in ferroelectrics:Piezoelectric property engineering through local electric field distributionscitations
- 2019Modified energy harvesting figures of merit for stress- and strain-driven piezoelectric systemscitations
- 2018Freeze cast porous barium titanate for enhanced piezoelectric energy harvestingcitations
- 2018Corrigendum to “Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of merit” [Acta Mater. 128 (2017) 207–217](S1359645417301209)(10.1016/j.actamat.2017.02.029)citations
- 2018Understanding the effect of porosity on the polarisation-field response of ferroelectric materialscitations
- 2017Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of meritcitations
- 2016Manufacture and characterization of porous ferroelectrics for piezoelectric energy harvesting applicationscitations
Places of action
Organizations | Location | People |
---|
article
Understanding the effect of porosity on the polarisation-field response of ferroelectric materials
Abstract
This paper combines experimental and modelling studies to provide a detailed examination of the influence of porosity volume fraction and morphology on the polarisation-electric field response of ferroelectric materials. The broadening of the electric field distribution and a decrease in the electric field experienced by the ferroelectric ceramic medium due to the presence of low-permittivity pores is examined and its implications on the shape of the hysteresis loop, remnant polarisation and coercive field is discussed. The variation of coercive field with porosity level is seen to be complex and is attributed to two competing mechanisms where at high porosity levels the influence of the broadening of the electric field distribution dominates, while at low porosity levels an increase in the compliance of the matrix is more important. This new approach to understanding these materials enables the seemingly conflicting observations in the existing literature to be clarified and provides an effective approach to interpret the influence of pore fraction and morphology on the polarisation behaviour of ferroelectrics. Such information provides new insights in the interpretation of the physical properties of porous ferroelectric materials to inform future effort in the design of ferroelectric materials for piezoelectric sensor, actuator, energy harvesting, and transducer applications.