People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Orozco-Caballero, Alberto
Universidad Politécnica de Madrid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2025Twin nucleation at grain boundaries in Mg analyzed through in situ electron backscatter diffraction and high-resolution digital image correlationcitations
- 2023Accurate determination of active slip systems for improved geometrical criteria of basal-to-basal slip transfer at grain boundaries in pure Mgcitations
- 2020High Strain Rate Superplasticity of WE54 Mg Alloy after Severe Friction Stir Processingcitations
- 2018Back-stresses and geometrical hardening as competing mechanisms enhancing ductility in HCP metalscitations
- 2018Back-stresses and geometrical hardening as competing mechanisms enhancing ductility in HCP metalscitations
- 2018Enabling high resolution strain mapping in zirconium alloyscitations
- 2018Enabling high resolution strain mapping in zirconium alloyscitations
- 2018On the ductility of alpha titanium: The effect of temperature and deformation modecitations
- 2018On the ductility of alpha titanium: The effect of temperature and deformation modecitations
- 2017Grain size versus microstructural stability in the high strain rate superplastic response of a severely friction stir processed Al-Zn-Mg-Cu alloycitations
- 2017Influence of Grain Coarsening on the Creep Parameters During the Superplastic Deformation of a Severely Friction Stir Processed Al-Zn-Mg-Cu Alloycitations
- 2017How magnesium accommodates local deformation incompatibility: a high-resolution digital image correlation studycitations
- 2017Evaluation of the mechanical anisotropy and the deformation mechanism in a multi-pass friction stir processed Al-Zn-Mg-Cu alloycitations
- 2016Strategy for severe friction stir processing to obtain acute grain refinement of an Al-Zn-Mg-Cu alloy in three initial precipitation statescitations
Places of action
Organizations | Location | People |
---|
article
On the ductility of alpha titanium: The effect of temperature and deformation mode
Abstract
Single phase α-titanium shows anomalous warm deformation behaviour. As the temperature increases, ductility increases in uniaxial tension and decreases in biaxial stretching. Previously, this behaviour was attributed to an increase in strain rate sensitivity and a decrease in twinning activity with temperature. In this study, we show that it can instead be explained by an increase in slip anisotropy with temperature. Grade 2 CP-Ti sheet was tested in uniaxial tension at 20 °C and 300 °C to determine ductility, work hardening behaviour and the coefficient of plastic anisotropy (R-value). The increase in uniaxial ductility with temperature was found to be a consequence of an increasing rate of saturation work hardening with temperature. In the absence of significant twinning, this unexpected work hardening behaviour was attributed to an increase in slip anisotropy with temperature. This hypothesis was supported by crystal plasticity finite element modelling results, which are also able to predict the observed increase in surface roughness with temperature. The increase in anisotropy leads to higher strain localization which, coupled with the increasing work hardening rate helps explain why biaxial ductility decreases with increasing temperature. In addition to explaining the limitations in warm forming of Ti, understanding the origins of these effects contributes to our general understanding of the deformation of other hexagonal metals like Zr and Mg.