People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcfadden, Shaun
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (37/37 displayed)
- 2024Structures in grain-refined directionally solidified hypoeutectic Al-Cu alloys: Benchmark experiments under microgravity on-board the International Space Stationcitations
- 2022Powder Reuse in Laser-Based Powder Bed Fusion of Ti6Al4V—Changes in Mechanical Properties during a Powder Top-Up Regimecitations
- 2022Concurrent model for sharp and progressive columnar to equiaxed transitions validated by directional solidification experiments processed in microgravity conditionscitations
- 2022Competitive growth during directional solidification experiments of 〈1 1 1〉 Dendritescitations
- 2022On the application of Vickers micro hardness testing to isotactic polypropylenecitations
- 2021Validation of a Front-Tracking Model of the Columnar to Equiaxed Transition using Solidification Results from the Maxus 7 Microgravity Platform
- 2021Multiple Dendrite Tip Tracking for In-Situ Directional Solidification: Experiments and Comparisons to Theorycitations
- 2021A Simplified Thermal Approximation Method to include the effects of Marangoni Convection in the melt pools of processes that involve moving point heat sourcescitations
- 2021Analysis of spatter removal by sieving during a powder-bed fusion manufacturing campaign in grade 23 titanium alloycitations
- 2021Thread-stripping test procedures leading to factors of safety data for friction-drilled holes in thin-section aluminium alloycitations
- 2020Reuse of grade 23 Ti6Al4V powder during the laser-based powder bed fusion processcitations
- 2018A Review of Powder Bed Fusion for Additively Manufactured Ti-6wt.%Al-4wt.%V
- 2018A Nucleation Progenitor Function approach to polycrystalline equiaxed solidification modelling with application to a microgravity transparent alloy experiment observed in-situcitations
- 2018Influence of natural and forced gravity conditions during directional columnar solidificationcitations
- 2018A REVIEW OF THERMAL MODELLING FOR METAL ADDITIVE MANUFACTURING PROCESSES: BASIC ANALYTICAL MODELS TO STATE-OF-THE-ART SOFTWARE PACKAGES.
- 2017Axisymmetric front tracking model for the investigation of grain structure evolution during directional solidificationcitations
- 2017Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Projectcitations
- 2015Conditions for CET in a gamma TiAl alloycitations
- 2013Analysis of a Microgravity Solidification Experiment for Columnar to Equiaxed Transitions with Modeling Resultscitations
- 2013Macroscopic model for predicting columnar to equiaxed transitions using columnar front tracking and average equiaxed growthcitations
- 2011Review of the MAXUS 8 sounding rocket experiment to investigate solidification in a Ti-Al-Nb alloy
- 2010Analysis of a microgravity solidification experiment for Columnar to Equiaxed Transitions with modeling resultscitations
- 2010Modeling of heat and solute interactions upon grain structure solidificationcitations
- 2010Macroscopic model for predicting columnar to equiaxed transitions using columnar front tracking and average equiaxed growthcitations
- 2010The development of a microgravity experiment involving columnar to equiaxed transition for solidification of a Ti-Al based alloycitations
- 2009Prediction of columnar to equiaxed transition in alloy castings with convective heat transfer and equiaxed grain transportation
- 2009A combined experimental-model approach to estimate the solidification macrostructures formed during a microgravity experiment on Ti-Al based intermetallic alloys
- 2009A comparison of columnar-to-equiaxed transition prediction methods using simulation of the growing columnar frontcitations
- 2009A front-tracking model to predict solidification macrostructures and columnar to equiaxed transitions in alloy castingscitations
- 2008Validation of a Front-Tracking Model of the Columnar to Equiaxed Transition using Solidification Results from the Maxus 7 Microgravity Platform
- 2008Validation of a Front-Tracking Model of the Columnar to Equiaxed Transition using Solidification Results from the Maxus 7 Microgravity Platform
- 2008Modeling of heat and solute interactions upon grain structure solidificationcitations
- 2007Natural convection and columnar-to-equiaxed transition prediction in a front-tracking model of alloy solidificationcitations
- 2006Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL)
- 2006A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steelscitations
- 2006Prediction of the formation of an equiaxed zone ahead of a columnar front in binary alloy castingscitations
- 2005A front-tracking method of predicting the solidification microstructure in shape castings
Places of action
Organizations | Location | People |
---|
article
A Nucleation Progenitor Function approach to polycrystalline equiaxed solidification modelling with application to a microgravity transparent alloy experiment observed in-situ
Abstract
A Nucleation Progenitor Function (NPF) approach that accounts for the interdependence between nucleation and growth during equiaxed solidification is proposed. An athermal nucleation density distribution, based on undercooling, is identified as a progenitor function. A Kolmogorov statistical approach is applied assuming continuous nucleation and growth conditions. The derived progeny functions describe the (supressed) distribution of actual nucleation events. The approach offers the significant advantage of generating progeny functions for volumetric (3D) data and projected image (2D) data. The main difference between 3D and 2D data in transparent alloy experiments is due to a stereological correction for over-projection. Progeny functions can be analysed to obtain statistical output information, e.g., nucleation counts, average nucleation undercooling and standard deviation. The statistical output data may be calculated in a formative (running) or a summative (final) mode. The NPF kinetics have been incorporated into a transient thermal model of equiaxed solidification. The model has been applied to characterise a microgravity solidification experiment with the transparent alloy system Neopentylgycol-30 wt%(d)Camphor. The model predicted thermal and observed nucleation and growth data with a good level of agreement.