Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Martin, Christophe, Louis

  • Google
  • 10
  • 32
  • 416

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2018Anisotropic sintering behavior of freeze-cast ceramics by optical dilatometry and discrete-element simulations35citations
  • 2018Design of strain tolerant porous microstructures – A case for controlled imperfection11citations
  • 2017Fast in situ 3D nanoimaging: a new tool for dynamic characterization in materials science85citations
  • 2016Effect of Macropore Anisotropy on the Mechanical Response of Hierarchically Porous Ceramics69citations
  • 2016Rational design of hierarchically nanostructured electrodes for solid oxide fuel cells36citations
  • 2015Effective transport properties of 3D multi-component microstructures with interface resistance15citations
  • 2015Three dimensional analysis of Ce0.9Gd0.1O1.95–La0.6Sr0.4Co0.2Fe0.8O3−δ oxygen electrode for solid oxide cells15citations
  • 2011Microstructure of porous composite electrodes generated by the discrete element method43citations
  • 2007Micromodeling of Functionally Graded SOFC Cathodes17citations
  • 2006Discrete modelling of the electrochemical performance of SOFC electrodes90citations

Places of action

Chart of shared publication
Bordia, Rajendra
2 / 3 shared
Villanova, Julie
3 / 32 shared
Lichtner, Aaron
2 / 6 shared
Jauffres, David
3 / 15 shared
Röhrens, Daniel
1 / 3 shared
Roussel, Denis
3 / 5 shared
Tucoulou, Rémi
1 / 3 shared
Labouré, Sylvain
1 / 1 shared
Martinez-Criado, Gema
1 / 3 shared
Daudin, Rémi
1 / 16 shared
Lhuissier, Pierre
1 / 31 shared
Lou, Siyu
1 / 1 shared
Salvo, Luc
1 / 21 shared
Bordia, Rajendra K.
2 / 7 shared
Franks, G.
1 / 1 shared
Jauffrès, David
3 / 8 shared
Djurado, Elisabeth
2 / 42 shared
Çelikbilek, Ӧzden
1 / 2 shared
Burriel, Mónica
1 / 17 shared
Siebert, Elisabeth
2 / 11 shared
Dessemond, Laurent
3 / 16 shared
Lichtner, A.
1 / 3 shared
Sar, Jaroslaw
1 / 4 shared
Celikbilek, Ozden
1 / 4 shared
Bouvard, Didier
2 / 32 shared
Delahaye, Thibaud
1 / 7 shared
Laurencin, Jerome
1 / 4 shared
Delette, Gerard
1 / 2 shared
Liu, Xiaoxing
1 / 2 shared
Deseure, Jonathan
1 / 3 shared
Bultel, Yann
2 / 8 shared
Schneider, Ludwig, Clemens Reinhard
2 / 2 shared
Chart of publication period
2018
2017
2016
2015
2011
2007
2006

Co-Authors (by relevance)

  • Bordia, Rajendra
  • Villanova, Julie
  • Lichtner, Aaron
  • Jauffres, David
  • Röhrens, Daniel
  • Roussel, Denis
  • Tucoulou, Rémi
  • Labouré, Sylvain
  • Martinez-Criado, Gema
  • Daudin, Rémi
  • Lhuissier, Pierre
  • Lou, Siyu
  • Salvo, Luc
  • Bordia, Rajendra K.
  • Franks, G.
  • Jauffrès, David
  • Djurado, Elisabeth
  • Çelikbilek, Ӧzden
  • Burriel, Mónica
  • Siebert, Elisabeth
  • Dessemond, Laurent
  • Lichtner, A.
  • Sar, Jaroslaw
  • Celikbilek, Ozden
  • Bouvard, Didier
  • Delahaye, Thibaud
  • Laurencin, Jerome
  • Delette, Gerard
  • Liu, Xiaoxing
  • Deseure, Jonathan
  • Bultel, Yann
  • Schneider, Ludwig, Clemens Reinhard
OrganizationsLocationPeople

article

Design of strain tolerant porous microstructures – A case for controlled imperfection

  • Bordia, Rajendra
  • Martin, Christophe, Louis
  • Jauffres, David
Abstract

Porous materials, especially ceramics, are used in an ever-expanding range of functional applications. In most cases there are minimum mechanical requirements which limit the porosity level and thus the functional performance provided by the pore surface or volume. In order to design porous materials with the best compromise between functional and mechanical performance, a sound understanding of microstructure-mechanical properties relationships is required. In the current work, discrete simulations are used to assessed the Young's modulus and fracture toughness of various realistic porous microstructures obtained via partial sintering of powders. Scaling laws relating these quantities to microstructural parameters are derived and it is demonstrated that the proportionality between Young's modulus and fracture toughness, often claimed for partially sintered materials, is actually an approximation of a more general relationship. The proposed scaling laws suggest new strategies to build microstructurally tougher and strain tolerant porous materials. It is shown that strain tolerant microstructures can be designed by introducing controlled heterogeneity and hierarchy. Finally, the proposed scaling relationship between Young's modulus and fracture toughness is simplified to give it a practical use and verified for a wide range of porous microstructures, including hierarchical ones.

Topics
  • porous
  • impedance spectroscopy
  • pore
  • surface
  • simulation
  • porosity
  • ceramic
  • fracture toughness
  • sintering