People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yan, Kun
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Creep deformation phenomena in near-surface carburised layers of 316H stainless steels
- 2022Creep performance of carburized 316H stainless steel at 550°Ccitations
- 2022The Mechanical Performance of Additively Manufactured 316L Austenitic Stainless Steelcitations
- 2021Solidification microstructure and residual stress correlations in direct energy deposited type 316L stainless steelcitations
- 2021Oxidation and carburization behaviour of two type 316H stainless steel casts in simulated AGR gas environment at 550 and 600 °Ccitations
- 2019Deformation Mechanisms of Twinning-Induced Plasticity Steel Under Shock-Load: Investigated by Synchrotron X-Ray Diffractioncitations
- 2018Investigating nano-precipitation in a V-containing HSLA steel using small angle neutron scatteringcitations
- 2016In situ synchrotron X-ray diffraction studies of the effect of microstructure on tensile behavior and retained austenite stability of thermo-mechanically processed transformation induced plasticity steelcitations
- 2014Martensitic phase transformation and deformation behavior of Fe-Mn-C-Al twinning-induced plasticity steel during high-pressure torsioncitations
- 2013Defect dynamics in polycrystalline zirconium alloy probed in situ by primary extinction of neutron diffractioncitations
- 2012Characterization of superelasticity in a new Fe-based shape memory alloy using neutron and synchrotron radiation
- 2012Hot deformation of cast and extruded TiAl:An in-situ diffraction studycitations
- 2011Phase transition and ordering behavior of ternary Ti-Al-Mo alloys using in-situ neutron diffractioncitations
- 2009From single grains to texturecitations
- 2009In situ observation of dynamic recrystallization in the bulk of zirconium alloycitations
- 2009In situ study of dynamic recrystallization and hot deformation behavior of a multiphase titanium aluminide alloycitations
Places of action
Organizations | Location | People |
---|
article
Investigating nano-precipitation in a V-containing HSLA steel using small angle neutron scattering
Abstract
Interphase precipitation (IPP) of nanoscale carbides in a vanadium-containing high-strength low-alloy steel has been investigated. Small angle neutron scattering (SANS) and transmission electron microscopy (TEM) were employed to characterize the precipitates and their size distributions in Fe-0.047C-0.2V-1.6Mn (in wt.%) alloy samples which had been austenitized, isothermally transformed at 700 °C for between 3 and 600 min and water quenched. TEM confirms that, following heat treatment, rows of vanadium-containing nanoscale interphase precipitates were present. Model-independent analysis of the nuclear SANS signal and model fitting calculations, using oblate spheroid and disc-shapes, were performed. The major axis diameter increased from 18 nm after 3 min to 35 nm after 600 min. Precipitate volume percent increased from 0.09 to 0.22 vol% over the same period and number density fell from 2 × 10 21 to 5 × 10 20 m −3 . A limited number of measurements of precipitate maximum diameters from TEM images showed the mean value increased from 8 nm after 5 min to 28 nm after 600 min which is in reasonable agreement with the SANS data.