People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Harris, Zachary D.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Effects of grain size and deformation temperature on hydrogen-enhanced vacancy formation in Ni alloys
Abstract
<p>Positron annihilation spectroscopy and thermal desorption spectroscopy experiments were combined to ascertain the role of hydrogen on generation of vacancies and vacancy clusters in Ni alloys. The effects of grain size and deformation temperature are emphasized for pure Ni single crystals and polycrystalline Ni-201 alloy samples with two grain sizes that were thermally pre-charged with 3000 appm hydrogen. Variation in positron lifetime and intensity suggests that hydrogen enhances and stabilizes vacancies and vacancy clusters. Additionally, grain boundaries and the regions adjacent to them are preferential sites for vacancy and cluster formation. Hydrogen-altered vacancies and vacancy clusters are manifest in yield behavior differences: uniform vacancy distributions augment strength increases after hydrogen charging; enhanced yield strength during cryogenic deformation is ascribed to an 'Orowan type' strengthening mechanism while cross-slip restriction dominates hardening behavior at room temperature. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</p>