People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ward, Mark
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2021Metallurgical modelling of Ti-6Al-4V for welding applicationscitations
- 2020Microstructural modelling of thermally-driven β grain growth, lamellae & martensite in Ti-6Al-4Vcitations
- 2019Microstructural modelling of the α+β phase in Ti-6Al-4V:citations
- 2019Modelling of the heat-affected and thermomechanically affected zones in a Ti-6Al-4V inertia friction weldcitations
- 2017Study of as-cast structure formation in Titanium alloy
- 2017Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloyscitations
- 2016Porosity formation in laser welded Ti-6Al-4V Alloy: modelling and validation
- 2016Linking a CFD and FE analysis for Welding Simulations in Ti-6Al-4V
- 2016Calculating the energy required to undergo the conditioning phase of a titanium alloy inertia friction weldcitations
- 2016An integrated modelling approach for predicting process maps of residual stress and distortion in a laser weldcitations
- 2016Defect formation and its mitigation in selective laser melting of high γ′ Ni-base superalloyscitations
- 2016Technology scale-up in metal additive manufacture
- 2015Linear friction welding of Ti6Al4V: experiments and modellingcitations
- 2015Validation of a Model of Linear Friction Welding of Ti6Al4V by Considering Welds of Different Sizescitations
- 2015On the role of melt flow into the surface structure and porosity development during selective laser meltingcitations
- 2015Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser meltingcitations
- 2013Determination of the magnitude of interfacial air-gap and heat transfer during ingot casting into permanent metal moulds by numerical and experimental techniquescitations
- 2013A multiscale 3D model of the Vacuum Arc remelting processcitations
- 2012A multi-scale 3D model of the vacuum arc remelting processcitations
- 2011Linear friction welding of Ti-6Al-4V: Modelling and validationcitations
- 2010Microstructure and corrosion of Pd-modified Ti alloys produced by powder metallurgycitations
- 2009An analysis of the use of magnetic source tomography to measure the spatial distribution of electric current during vacuum arc remeltingcitations
- 2008Effect of Variation in Process Parameters on the Formation of Freckle in INCONEL 718 by Vacuum Arc Remeltingcitations
- 2004The effect of VAR process parameters on white spot formation in INCONEL 718citations
- 2004A simple transient numerical model for heat transfer and shape evolution during the production of rings by centrifugal spray depositioncitations
Places of action
Organizations | Location | People |
---|
article
Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys
Abstract
High energy-density beam welding, such as electron beam or laser welding, has found a number of industrial applications for clean, high-integrity welds. The deeply penetrating nature of the joints is enabled by the formation of metal vapour which creates a narrow fusion zone known as a “keyhole”. However the formation of the keyhole and the associated keyhole dynamics, when using a moving laser heat source, requires further research as they are not fully understood. Porosity, which is one of a number of process induced phenomena related to the thermal fluid dynamics, can form during beam welding processes. The presence of porosity within a welded structure, inherited from the fusion welding operation, degrades the mechanical properties of components during service such as fatigue life. In this study, a physics-based model for keyhole welding including heat transfer, fluid flow and interfacial interactions has been used to simulate keyhole and porosity formation during laser welding of Ti-6Al-4V titanium alloy. The modelling suggests that keyhole formation and the time taken to achieve keyhole penetration can be predicted, and it is important to consider the thermal fluid flow at the melting front as this dictates the evolution of the fusion zone. Processing induced porosity is significant when the fusion zone is only partially penetrating through the thickness of the material. The modelling results are compared with high speed camera imaging and measurements of porosity from welded samples using X-ray computed tomography, radiography and optical micrographs. These are used to provide a better understanding of the relationship between process parameters, component microstructure and weld integrity.