Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thomas, Spencer L.

  • Google
  • 4
  • 6
  • 482

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2019The Coupling of Grain Growth and Twinning in FCC Metals3citations
  • 2018Machine learning determination of atomic dynamics at grain boundaries80citations
  • 2018Grain-boundary kinetics343citations
  • 2016When twins collide56citations

Places of action

Chart of shared publication
Srolovitz, David
4 / 65 shared
Cubuk, Ekin D.
1 / 1 shared
Schoenholz, Samuel S.
1 / 1 shared
Liu, Andrea J.
1 / 2 shared
Sharp, Tristan A.
1 / 1 shared
King, Alexander H.
1 / 1 shared
Chart of publication period
2019
2018
2016

Co-Authors (by relevance)

  • Srolovitz, David
  • Cubuk, Ekin D.
  • Schoenholz, Samuel S.
  • Liu, Andrea J.
  • Sharp, Tristan A.
  • King, Alexander H.
OrganizationsLocationPeople

article

When twins collide

  • Thomas, Spencer L.
  • Srolovitz, David
  • King, Alexander H.
Abstract

We present the results of large-scale molecular dynamics simulations of grain growth in polycrystalline nickel with nanoscale grains. The simulations show that grain growth is accompanied by coherent twin boundary (CTB) generation. As the grains grow, twins collide; such collisions result in twin junctions. We catalog all possible twin junctions and show examples of each from the simulations. These include junctions of 2-4 CTBs with grain boundaries and five-fold twin junctions (penta-twins). We elucidate the mechanisms by which all of these junctions form and their relative frequencies. Penta-twins, which are rare in coarse microstructures, occur frequently in nanocrystalline metals. Their absence in macro-scale samples can be traced to the wedge-disclination character (and, consequently, an elastic energy that diverges with sample size). In the nanocrystalline case, the presence of penta-twins can be traced to this twin collision formation mechanism, which is responsible for their wedge-disclination dipole character (relatively small elastic energy). We demonstrate how all CTB junctions, especially penta-twins, retard grain growth.

Topics
  • impedance spectroscopy
  • grain
  • nickel
  • simulation
  • molecular dynamics
  • grain growth
  • twin boundary