People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mitterer, Christian
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Enhancement of copper nanoparticle yield in magnetron sputter inert gas condensation by applying substrate bias voltage and its influence on thin film morphologycitations
- 2024Short-Time Magnetron Sputtering for the Development of Carbon–Palladium Nanocomposites
- 2023Improved thermolytic dehydrogenation of LiBH4 nanoconfined in few-layer graphene with different functionalitiescitations
- 2023Parameters influencing the fracture of Mo films and their wider significancecitations
- 2023Synergistic enhancement of hydrogen interactions in palladium–silicon–gold metallic glass with multilayered graphenecitations
- 2023Synergistic enhancement of hydrogen interactions in palladium-gold-silicon metallic glass on multilayered graphenecitations
- 2022Impact of Si on the high-temperature oxidation of AlCr(Si)N coatingscitations
- 2022Determination of Cooling Rate and Temperature Gradient during Formation of Cathode Spot Craters in a Vacuum Arccitations
- 2022Magnetron Sputtered Non‐Toxic and Precious Element‐Free TiZrGe Metallic Glass Nanofilms with Enhanced Biocorrosion Resistancecitations
- 2022Precipitation-based grain boundary design alters Inter- to Trans-granular Fracture in AlCrN Thin Filmscitations
- 2021Rapid solidification and metastable phase formation during surface modifications of composite Al-Cr cathodes exposed to cathodic arc plasmacitations
- 2021Synthesis of bulk reactive Ni–Al composites using high pressure torsioncitations
- 2020Effect of Pt nanoparticle decoration on the H2 storage performance of plasma-derived nanoporous graphenecitations
- 2020Influence of spinodal decomposition and fcc→w phase transformation on global and local mechanical properties of nanolamellar CVD fcc-Ti1-xAlxN coatingscitations
- 2020Stress relaxation through thermal crack formation in CVD TiCN coatings grown on WC-Co with different Co contentscitations
- 2020Nanoscale stress distributions and microstructural changes at scratch track cross-sections of a deformed brittle-ductile CrN-Cr bilayercitations
- 2020Evolution of stress fields during crack growth and arrest in a brittle-ductile CrN-Cr clamped-cantilever analysed by X-ray nanodiffraction and modellingcitations
- 2019Anisotropy of fracture toughness in nanostructured ceramics controlled by grain boundary designcitations
- 2019Thermal stability of nanolamellar fcc-Ti1-xAlxN grown by chemical vapor depositioncitations
- 2019Stress-controlled decomposition routes in cubic AlCrN films assessed by in-situ high-temperature high-energy grazing incidence transmission X-ray diffractioncitations
- 2018Novel combustion synthesis of carbon foam‑aluminum fluoride nanocomposite materialscitations
- 2018Needle grass array of nanostructured nickel cobalt sulfide electrode for clean energy generationcitations
- 2017Solvothermal synthesis, nanostructural characterization and gas cryo-adsorption studies in a metal-organic framework (IRMOF-1) materialcitations
- 2016In-situ Observation of Cross-Sectional Microstructural Changes and Stress Distributions in Fracturing TiN Thin Film during Nanoindentationcitations
- 2016Hierarchical Architectures to Enhance Structural and Functional Properties of Brittle Materialscitations
- 2016Cross-sectional structure-property relationship in a graded nanocrystalline Ti1-xAlxN thin filmcitations
- 2014Mono-textured nanocrystalline thin films with pronounced stress-gradientscitations
- 2007Tribological properties of nanocomposite CrC x /a-C:H thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Cross-sectional structure-property relationship in a graded nanocrystalline Ti1-xAlxN thin film
Abstract
<p>The influence of simultaneously occurring gradients of crystalline phases, microstructure, chemical composition and strains on overall as well as local mechanical properties of nanocrystalline thin films is challenging to understand. In this work, cross-sectional structure-property relationships in a graded nanocrystalline 2 μm thick Ti<sub>1-x</sub>Al<sub>x</sub>N film were analyzed using in-situ bending tests on micro-cantilevers in transmission electron microscope, synchrotron X-ray nanodiffraction and nanoindentation. The results document that sub-micron depth variations of fracture stresses, hardness and elastic moduli depend on phases, crystallite sizes, crystallographic texture, Ti/Al ratio and residual strain. The local mechanical properties are primarily influenced by cross-sectional occurrence of binary and ternary phases and their intrinsic properties. Secondly, the hardness and fracture stress gradients depend on cross-sectional microstructure, especially on the local crystallite sizes and shapes as well as fiber textures. Two nucleation regions of cubic TiN and hexagonal Ti<sub>1-x</sub>Al<sub>x</sub>N phases with globular shaped crystal sizes in the nm range and relatively large in-plane residuals strains result in significantly higher hardness and fracture stresses in comparison with a coarse-grained region consisting of columnar cubic Ti<sub>1-x</sub>Al<sub>x</sub>N crystallites. The fracture behavior of cantilevers with ∼0.5 × 0.5 μm<sup>2</sup> cross-section depends also on the apparent grain size whereby the nucleation regions exhibit linear-elastic fracture in contrast to partly ductile response of the region with elongated nanocrystals. Finally, the experimental data indicate the possibility of mechanical optimization of nanocrystalline thin films through cross-sectional nanoscale design.</p>