People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Panwisawas, Chinnapat
Queen Mary University of London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Pore evolution mechanisms during directed energy deposition additive manufacturingcitations
- 2024Pore evolution mechanisms during directed energy deposition additive manufacturing
- 2023Multi-length-scale study on the heat treatment response to supersaturated nickel-based superalloyscitations
- 2022Development, characterisation, and modelling of processability of nitinol stents using laser powder bed fusioncitations
- 2021Ultra-high temperature deformation in a single crystal superalloycitations
- 2021High Entropy Alloys as Filler Metals for Joiningcitations
- 2020Relating micro-segregation to site specific high temperature deformation in single crystal nickel-base superalloy castingscitations
- 2018Mean-field modelling of the intermetallic precipitate phases during heat treatment and additive manufacture of Inconel 718citations
- 2018History dependence of the microstructure on time-dependent deformation during in-situ cooling of a nickel-based single crystal superalloycitations
- 2018A computational study on the three-dimensional printability of precipitate-strengthened nickel-based superalloyscitations
- 2017The contrasting roles of creep and stress relaxation in the time-dependent deformation during in-situ cooling of a nickel-base single crystal superalloycitations
- 2017Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloyscitations
- 2017Mesoscale modelling of selective laser meltingcitations
- 2016Porosity formation in laser welded Ti-6Al-4V Alloy: modelling and validation
- 2016Linking a CFD and FE analysis for Welding Simulations in Ti-6Al-4V
- 2016Linking a CFD and FE analysis for Welding Simulations in Ti-6Al-4V
- 2016An integrated modelling approach for predicting process maps of residual stress and distortion in a laser weldcitations
- 2015On the role of thermal fluid dynamics into the evolution of porosity during selective laser meltingcitations
- 2015On the role of melt flow into the surface structure and porosity development during selective laser meltingcitations
- 2013Modelling and prediction of recrystallisation in single crystal superalloys
- 2012Prediction of plastic strain for recrystallisation during investment casting of single crystal superalloyscitations
- 2011Numerical modelling of stress and strain evolution during solidification of a single crystal superalloycitations
Places of action
Organizations | Location | People |
---|
article
On the role of melt flow into the surface structure and porosity development during selective laser melting
Abstract
In this study, the development of surface structure and porosity of Ti–6Al–4V samples fabricated by selective laser melting under different laser scanning speeds and powder layer thicknesses has been studied and correlated with the melt flow behaviour through both experimental and modelling approaches. The as-fabricated samples were investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The interaction between laser beam and powder particles was studied by both high speed imaging observation and computational fluid dynamics (CFD) calculation. It was found that at a high laser power and a fixed powder layer thickness (20 μm), the samples contain particularly low porosity when the laser scanning speeds are below 2700 mm/s. Further increase of scanning speed led to increase of porosity but not significantly. The porosity is even more sensitive to powder layer thickness with the use of thick powder layers (above 40 μm) leading to significant porosity. The increase of porosity with laser scanning speed and powder layer thickness is not inconsistent with the observed increase in surface roughness complicated by increasingly irregular-shaped laser scanned tracks and an increased number of discontinuity and cave-like pores on the top surfaces. The formation of pores and development of rough surfaces were found by both high speed imaging and modelling, to be strongly associated with unstable melt flow and splashing of molten material.