People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ward, Mark
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2021Metallurgical modelling of Ti-6Al-4V for welding applicationscitations
- 2020Microstructural modelling of thermally-driven β grain growth, lamellae & martensite in Ti-6Al-4Vcitations
- 2019Microstructural modelling of the α+β phase in Ti-6Al-4V:citations
- 2019Modelling of the heat-affected and thermomechanically affected zones in a Ti-6Al-4V inertia friction weldcitations
- 2017Study of as-cast structure formation in Titanium alloy
- 2017Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloyscitations
- 2016Porosity formation in laser welded Ti-6Al-4V Alloy: modelling and validation
- 2016Linking a CFD and FE analysis for Welding Simulations in Ti-6Al-4V
- 2016Calculating the energy required to undergo the conditioning phase of a titanium alloy inertia friction weldcitations
- 2016An integrated modelling approach for predicting process maps of residual stress and distortion in a laser weldcitations
- 2016Defect formation and its mitigation in selective laser melting of high γ′ Ni-base superalloyscitations
- 2016Technology scale-up in metal additive manufacture
- 2015Linear friction welding of Ti6Al4V: experiments and modellingcitations
- 2015Validation of a Model of Linear Friction Welding of Ti6Al4V by Considering Welds of Different Sizescitations
- 2015On the role of melt flow into the surface structure and porosity development during selective laser meltingcitations
- 2015Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser meltingcitations
- 2013Determination of the magnitude of interfacial air-gap and heat transfer during ingot casting into permanent metal moulds by numerical and experimental techniquescitations
- 2013A multiscale 3D model of the Vacuum Arc remelting processcitations
- 2012A multi-scale 3D model of the vacuum arc remelting processcitations
- 2011Linear friction welding of Ti-6Al-4V: Modelling and validationcitations
- 2010Microstructure and corrosion of Pd-modified Ti alloys produced by powder metallurgycitations
- 2009An analysis of the use of magnetic source tomography to measure the spatial distribution of electric current during vacuum arc remeltingcitations
- 2008Effect of Variation in Process Parameters on the Formation of Freckle in INCONEL 718 by Vacuum Arc Remeltingcitations
- 2004The effect of VAR process parameters on white spot formation in INCONEL 718citations
- 2004A simple transient numerical model for heat transfer and shape evolution during the production of rings by centrifugal spray depositioncitations
Places of action
Organizations | Location | People |
---|
article
On the role of melt flow into the surface structure and porosity development during selective laser melting
Abstract
In this study, the development of surface structure and porosity of Ti–6Al–4V samples fabricated by selective laser melting under different laser scanning speeds and powder layer thicknesses has been studied and correlated with the melt flow behaviour through both experimental and modelling approaches. The as-fabricated samples were investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The interaction between laser beam and powder particles was studied by both high speed imaging observation and computational fluid dynamics (CFD) calculation. It was found that at a high laser power and a fixed powder layer thickness (20 μm), the samples contain particularly low porosity when the laser scanning speeds are below 2700 mm/s. Further increase of scanning speed led to increase of porosity but not significantly. The porosity is even more sensitive to powder layer thickness with the use of thick powder layers (above 40 μm) leading to significant porosity. The increase of porosity with laser scanning speed and powder layer thickness is not inconsistent with the observed increase in surface roughness complicated by increasingly irregular-shaped laser scanned tracks and an increased number of discontinuity and cave-like pores on the top surfaces. The formation of pores and development of rough surfaces were found by both high speed imaging and modelling, to be strongly associated with unstable melt flow and splashing of molten material.