People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Maaß, R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Dynamic properties of major shear bands in Zr-Cu-Al bulk metallic glasses
Abstract
<p>We present a systematic investigation of shear-band dynamics as a function of chemical composition in the Zr<inf>x</inf>Cu<inf>90-</inf><inf>x</inf>Al<inf>10</inf> (x = 45-65) metallic glass system. We investigate aging dynamics in the non-serrated flow regime, shear-band velocities in the serrated flow regime, the transition between these two flow modes, and the transition from ductile to brittle behavior. We find that the activation energy for shear-band propagation is largely determined by the underlying time scales of the shear process, and that temperature-dependent stress drops only play a minor role. The activation energy as a function of composition can be linked to the bonding strength between the fastest diffusor, Cu, and its coordinating atoms, represented by the ratio of strong Cu-Zr to weaker Cu-Cu bonds. This indicates that the resistance to accelerated shear, i.e. the apparent activation barrier, is primarily controlled by a chemical nearest-neighbor effect.</p>