Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thurnheer, P.

  • Google
  • 1
  • 4
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Dynamic properties of major shear bands in Zr-Cu-Al bulk metallic glasses34citations

Places of action

Chart of shared publication
Pogatscher, Stefan
1 / 61 shared
Löffler, J. F.
1 / 15 shared
Maaß, R.
1 / 1 shared
Laws, K. J.
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Pogatscher, Stefan
  • Löffler, J. F.
  • Maaß, R.
  • Laws, K. J.
OrganizationsLocationPeople

article

Dynamic properties of major shear bands in Zr-Cu-Al bulk metallic glasses

  • Thurnheer, P.
  • Pogatscher, Stefan
  • Löffler, J. F.
  • Maaß, R.
  • Laws, K. J.
Abstract

<p>We present a systematic investigation of shear-band dynamics as a function of chemical composition in the Zr&lt;inf&gt;x&lt;/inf&gt;Cu&lt;inf&gt;90-&lt;/inf&gt;&lt;inf&gt;x&lt;/inf&gt;Al&lt;inf&gt;10&lt;/inf&gt; (x = 45-65) metallic glass system. We investigate aging dynamics in the non-serrated flow regime, shear-band velocities in the serrated flow regime, the transition between these two flow modes, and the transition from ductile to brittle behavior. We find that the activation energy for shear-band propagation is largely determined by the underlying time scales of the shear process, and that temperature-dependent stress drops only play a minor role. The activation energy as a function of composition can be linked to the bonding strength between the fastest diffusor, Cu, and its coordinating atoms, represented by the ratio of strong Cu-Zr to weaker Cu-Cu bonds. This indicates that the resistance to accelerated shear, i.e. the apparent activation barrier, is primarily controlled by a chemical nearest-neighbor effect.</p>

Topics
  • impedance spectroscopy
  • glass
  • glass
  • strength
  • chemical composition
  • aging
  • activation
  • aging