Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schachermayer, Michael

  • Google
  • 2
  • 6
  • 120

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Carbon distribution in multi-phase γ-TiAl based alloys and its influence on mechanical properties and phase formation116citations
  • 2014Distribution of alloying elements within the constituent phases of a C-containing gamma-TiAl based alloy studied by atom probe tomography4citations

Places of action

Chart of shared publication
Rashkova, Boryana
2 / 10 shared
Klein, Thomas
2 / 28 shared
Schöberl, Thomas
1 / 3 shared
Mayer, Svea
2 / 56 shared
Clemens, Helmut
2 / 120 shared
Martin, Francisca Mendez
2 / 12 shared
Chart of publication period
2015
2014

Co-Authors (by relevance)

  • Rashkova, Boryana
  • Klein, Thomas
  • Schöberl, Thomas
  • Mayer, Svea
  • Clemens, Helmut
  • Martin, Francisca Mendez
OrganizationsLocationPeople

article

Carbon distribution in multi-phase γ-TiAl based alloys and its influence on mechanical properties and phase formation

  • Schachermayer, Michael
  • Rashkova, Boryana
  • Klein, Thomas
  • Schöberl, Thomas
  • Mayer, Svea
  • Clemens, Helmut
  • Martin, Francisca Mendez
Abstract

Advanced intermetallic γ-TiAl based alloys are attractive light-weight materials for high-temperature application. In order to extend their service temperature limits, alloying with low-density elements, such as C, is of particular interest and has been shown to effectively increase high-temperature strength as well as creep resistance.<br/><br/>In the present study the local chemical composition of the constituent phases of the so-called TNM alloy and a C-containing derivative thereof is characterized by atom probe tomography. In both alloys Mo is found to preferentially locate in the βo phase, in contrast to Nb, which is dispersed in similar levels in all phases. In the C-containing alloy, C is enriched in the α2 phase, dissolved in the γ phase, but depleted in the βo phase. Furthermore, the investigation of interfaces through site-specific sample preparation reveals segregation of C at phase interfaces and their close vicinity. Finally, a correlation of the mechanical properties with the C distribution is established by nanoindentation technique. Both the γ and the α2 phase significantly harden through the addition of C, which is in good agreement with the C concentration present within these phases as observed by atom probe tomography. However, the βo phase softens through the addition of C, which is not a direct consequence of the C distribution, but follows from the absence of finely dispersed ωo particles in the βo phase of the C-containing alloy.

Topics
  • density
  • impedance spectroscopy
  • Carbon
  • phase
  • strength
  • nanoindentation
  • chemical composition
  • intermetallic
  • creep
  • atom probe tomography