People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vorontsov, Vassili A.
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2023Miniaturised experimental simulation of open-die forgingcitations
- 2022Strengthening κ-carbide steels using residual dislocation contentcitations
- 2022Precipitate dissolution during deformation induced twin thickening in a CoNi-base superalloy subject to creepcitations
- 2020Generalised stacking fault energy of Ni-Al and Co-Al-W superalloyscitations
- 2019A nickel based superalloy reinforced by both Ni3Al and Ni3V ordered-fcc precipitatescitations
- 2018Mechanical behaviour of Ti-Nb-Hf alloyscitations
- 2017Alloying effects on oxidation mechanisms in polycrystalline Co–Ni base superalloyscitations
- 2017Functional stability of a ferromagnetic polycrystalline Ni2MnGa high temperature shape memory alloycitations
- 2017A high strength Ti–SiC metal matrix compositecitations
- 2016Coarsening behaviour and interfacial structure of γ′ precipitates in Co-Al-W based superalloyscitations
- 2016Determination of superlattice stacking fault energies in multi-component superalloys
- 2016Multi-scale modelling of high-temperature deformation mechanisms in Co-Al-W-based superalloys.
- 2016Understanding the "blue spot"citations
- 2016The dislocation mechanism of stress corrosion embrittlement in Ti-6Al-2Sn-4Zr-6Mocitations
- 2016Effect of precipitation on mechanical properties in the β-Ti alloy Ti-24Nb-4Zr-8Sncitations
- 2015The effect of grain size on the twin initiation stress in a TWIP steelcitations
- 2015Superelastic load cycling of gum metalcitations
- 2015Nanoprecipitation in a beta-titanium alloycitations
- 2015Segregation at stacking faults within the γ′ phase of two Ni-base superalloys following intermediate temperature creepcitations
- 2014The dynamic behaviour of a twinning induced plasticity steelcitations
- 2014Alloying and the micromechanics of Co-Al-W-X quaternary alloyscitations
- 2014Alloying effects in polycrystalline γ′ strengthened Co-Al-W base alloyscitations
- 2014Effect of alloying on the oxidation behaviour of Co-Al-W superalloyscitations
- 2012High-resolution electron microscopy of dislocation ribbons in a CMSX-4 superalloy single crystalcitations
- 2012Shearing of γ′ precipitates in Ni-base superalloyscitations
- 2011Prediction of mechanical behaviour in Ni-base superalloys using the phase field model of dislocationscitations
- 2010Shearing of γ́ precipitates by a (112) dislocation ribbons in Ni-base superalloyscitations
- 2008Phase field modelling of stacking fault shear in nickel base superalloys
Places of action
Organizations | Location | People |
---|
article
The effect of grain size on the twin initiation stress in a TWIP steel
Abstract
<p>The influence of grain size on the twinning stress of an Fe-15Mn-2Al-2Si-0.7C Twinning Induced Plasticity (TWIP) steel has been investigated. Five grain sizes were obtained using a combination of cold rolling and annealing. Electron backscatter diffraction (EBSD) analysis revealed that the material exhibited a typical cold rolled and annealed texture. Tensile testing showed the yield stress to increase with decreasing grain size, however, the ductility of the material was not substantially affected by a reduction in grain size. Cyclic tensile testing at sub-yield stresses indicated the accumulation of plastic strain with each cycle, consequently the nucleation stress for twinning was determined. The twin stress was found to increase with decreasing grain size. Furthermore, the amount of strain accumulated was greater in the coarser grain material. It is believed that this is due to a difference in the twin thickness, which is influenced by the initial grain size of the material. SEM and TEM analysis of the material deformed to 5% strain revealed thinner primary twins in the fine grain material compared to the coarse grain. TEM examination also showed the dislocation arrangement is affected by the grain size. Furthermore, a larger fraction of stacking faults was observed in the coarse-grained material. It is concluded that the twin nucleation stress and also the thickness of the deformation twins in a TWIP steel, is influenced by the initial grain size of the material. In addition grain refinement results in a boost in strength and energy absorption capabilities in the material.</p>