People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mottura, Alessandro
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024First-principles calculations of intrinsic stacking fault energies and elastic properties in binary nickel alloyscitations
- 2018First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloys
- 2018First-principles modeling of the temperature dependence for the superlattice intrinsic stacking fault energies in L12 Ni75-xXxAl25 alloyscitations
- 2018A kinetic Monte Carlo study of vacancy diffusion in non-dilute Ni-Re alloyscitations
- 2017First-principles calculations of thermodynamic properties and planar fault energies in Co3X and Ni3X L12 compoundscitations
- 2016Alloys-by-designcitations
- 2015High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloyscitations
- 2014Three-dimensional characterization of the permeability of W–Cu composites using a new “TriBeam” techniquecitations
- 2014Can slow-diffusing solute atoms reduce vacancy diffusion in advanced high-temperature alloys?citations
- 2014Nickel-rhenium compound sheds light on the potency of rhenium as a strengthener in high-temperature nickel alloyscitations
- 2014Modelling of the influence of alloy composition on flow stress in high-strength nickel-based superalloyscitations
- 2012A first-principles study of the effect of Ta on the superlattice intrinsic stacking fault energy of L12-Co3(Al,W)citations
- 2010Atom probe tomography analysis of the distribution of rhenium in nickel alloyscitations
- 2010Analysis of atomic-scale phenomena and the rhenium effect in nickel superalloys
- 2008A critique of rhenium clustering in Ni-Re alloys using extended X-ray absorption spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Modelling of the influence of alloy composition on flow stress in high-strength nickel-based superalloys
Abstract
<p>A model is proposed for the variation of the yield strength of nickel-based superalloys as a function of chemical composition. Consistent with hardening theory, alloy strength is assumed to be proportional to the product of the anti-phase boundary (APB) energy and the square root of the fraction of the strengthening <sup>γ′</sup> phase. A relationship is established between the APB energy estimated using a CALPHAD database and predictions from density functional theory. Quantitative estimates of the role played by Ti, Ta, Nb, Cr, W and Mo suggest that these elements have a profound effect on APB energy. A procedure is proposed to enable the strength to be estimated from an initial input of the chemical composition alone. Predictions are made for new multicomponent alloys. Insight is provided into how composition may be isolated for optimal strengthening. However, the size and spacing of the <sup>γ′</sup> precipitates is not explicitly predicted or considered; future work must address this.</p>