Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dijk, N. H. Van

  • Google
  • 9
  • 29
  • 215

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2014Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loading49citations
  • 2013Multi length scale characterization of austenite in TRIP steels using high-energy X-ray diffraction3citations
  • 2013Time-dependent synchrotron X-ray diffraction on the austenite decomposition kinetics in SAE 52100 bearing steel at elevated temperatures under tensile stress36citations
  • 2012Real-time synchrotron X-ray diffraction study on the isothermal martensite transformation of maraging steel in high magnetic fields13citations
  • 2011Microstructural control of the austenite stability in low-alloyed TRIP steels4citations
  • 2010Real-time martensitic transformation kinetics in maraging steel under high magnetic fields46citations
  • 2010Real-time martensitic transformation kinetics in maraging steel under high magnetic fields46citations
  • 2008Evolution of ferromagnetic order in URhGe alloyed with Ru, Co and Si18citations
  • 2004Critical scattering of polarized neutrons in the invar FE65Ni35 alloycitations

Places of action

Chart of shared publication
Blondé, R.
4 / 8 shared
Wright, J. P.
2 / 13 shared
Zhao, L.
3 / 36 shared
Zwaag, S. Van Der
6 / 35 shared
Jimenez-Melero, Enrique
6 / 58 shared
Brück, E.
3 / 14 shared
Sherif, M. Y.
1 / 2 shared
Honkimäki, V.
2 / 7 shared
Duffy, Jonathan A.
1 / 1 shared
Martin, D. San
1 / 1 shared
Sietsma, J.
1 / 96 shared
Zeitler, U.
2 / 8 shared
Martin, D.
1 / 11 shared
Kampert, E.
2 / 5 shared
Jiménez-Melero, E.
1 / 1 shared
San-Martín, D.
1 / 23 shared
Gortenmulder, T. J.
1 / 1 shared
De Visser, Anne
1 / 12 shared
Löhneysen, H. V.
1 / 7 shared
Wagemaker, M.
1 / 3 shared
Uhlarz, M.
1 / 12 shared
Moleman, A. C.
1 / 1 shared
Sakarya, S.
1 / 1 shared
Huy, N. T.
1 / 2 shared
Klaasse, J. C. P.
1 / 3 shared
Grigoriev, S. V.
1 / 18 shared
Okorokov, A. I.
1 / 8 shared
Maleyev, S. V.
1 / 4 shared
Eckerlebe, H.
1 / 28 shared
Chart of publication period
2014
2013
2012
2011
2010
2008
2004

Co-Authors (by relevance)

  • Blondé, R.
  • Wright, J. P.
  • Zhao, L.
  • Zwaag, S. Van Der
  • Jimenez-Melero, Enrique
  • Brück, E.
  • Sherif, M. Y.
  • Honkimäki, V.
  • Duffy, Jonathan A.
  • Martin, D. San
  • Sietsma, J.
  • Zeitler, U.
  • Martin, D.
  • Kampert, E.
  • Jiménez-Melero, E.
  • San-Martín, D.
  • Gortenmulder, T. J.
  • De Visser, Anne
  • Löhneysen, H. V.
  • Wagemaker, M.
  • Uhlarz, M.
  • Moleman, A. C.
  • Sakarya, S.
  • Huy, N. T.
  • Klaasse, J. C. P.
  • Grigoriev, S. V.
  • Okorokov, A. I.
  • Maleyev, S. V.
  • Eckerlebe, H.
OrganizationsLocationPeople

article

Time-dependent synchrotron X-ray diffraction on the austenite decomposition kinetics in SAE 52100 bearing steel at elevated temperatures under tensile stress

  • Blondé, R.
  • Sherif, M. Y.
  • Honkimäki, V.
  • Jimenez-Melero, Enrique
  • Dijk, N. H. Van
Abstract

<p>We have studied the decomposition kinetics of the metastable austenite phase present in quenched-and-tempered SAE 52100 steel by in situ high-energy synchrotron X-ray diffraction experiments at elevated temperatures of 200-235 °C under a constant tensile stress. We have observed a continuous decomposition of austenite into ferrite and cementite. The decomposition kinetics is controlled by the long-range diffusion of carbon atoms into the austenite ahead of the moving austenite/ferrite interface. The presence of a tensile stress of 295 MPa favours the carbon diffusion in the remaining austenite, so that the activation energy for the overall process decreases from 138-148 to 82-104 kJ mol<sup>-1</sup>. Before the austenite starts to decompose, a significant amount of carbon atoms partition from the surrounding martensite phase into the metastable austenite grains. This carbon partitioning takes place simultaneously with the carbide precipitation due to the over-tempering of the martensite phase. As the austenite decomposition proceeds gradually at a constant temperature and stress, the elastic strain in the remaining austenite grains continuously decreases. Consequently, the remaining austenite grains act as a reinforcement of the ferritic matrix at longer isothermal holding times. The texture evolution in the constituent phases reflects both significant grain rotations and crystal orientation relationships between the parent austenite phase and the newly formed ferritic grains.</p>

Topics
  • impedance spectroscopy
  • Carbon
  • grain
  • phase
  • x-ray diffraction
  • experiment
  • carbide
  • steel
  • texture
  • precipitation
  • activation
  • decomposition
  • tempering