Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ni, N.

  • Google
  • 25
  • 83
  • 1221

Imperial College London

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (25/25 displayed)

  • 2017Micromechanical strength of individual Al2O3 platelets42citations
  • 2017The use of 3d graphene networks for the creation of bio-inspired self-monitoring tough ceramic nanocompositescitations
  • 2017High-Mobility and High-Optical Quality Atomically Thin WS294citations
  • 2016Porosity in oxides on zirconium fuel cladding alloys, and its importance in controlling oxidation rates111citations
  • 2016An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS57citations
  • 2016How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys139citations
  • 2016Multi-scale characterisation of oxide on zirconium alloys6citations
  • 2016Mechanisms of oxidation of fuel cladding alloys revealed by high resolution APT, TEM and SIMS analysis8citations
  • 2016Focussed ion beam sectioning for the 3D characterisation of cracking in oxide scales formed on commercial ZIRLO (TM) alloys during corrosion in high temperature pressurised water90citations
  • 2016Studies regarding corrosion mechanisms in zirconium alloys36citations
  • 2016The atomic scale structure and chemistry of the zircaloy-4 metal-oxide interfacecitations
  • 20163D visualisation of crack distributions in oxidised zirconium alloys by FIB-slicing1citations
  • 2016Characterizing environmental degradation in PWRs by 3D FIB sequential sectioningcitations
  • 2016Quantitative EELS analysis of zirconium alloy metal/oxide interfaces.63citations
  • 2016Crystal structure of the zro phase at zirconium/zirconium oxide interfaces84citations
  • 2015The effect of Sn on corrosion mechanisms in advanced Zr-cladding for pressurised water reactors9citations
  • 2014Effect of Sn on Corrosion Mechanisms in Advanced Zr-Cladding for Pressurised Water Reactors9citations
  • 2013An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS57citations
  • 2013An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS57citations
  • 2013The effect of Sn on corrosion mechanisms in advanced Zr-cladding for pressurised water reactorscitations
  • 2012How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys139citations
  • 2012How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys139citations
  • 2012Mechanisms of oxidation of fuel cladding alloys revealed by high resolution APT, TEM and SIMS analysis8citations
  • 2011Studies regarding corrosion mechanisms in zirconium alloys36citations
  • 2011Studies regarding corrosion mechanisms in zirconium alloys36citations

Places of action

Chart of shared publication
Giuliani, F.
1 / 19 shared
Saiz, E.
2 / 15 shared
Vandeperre, L.
1 / 7 shared
Giovannini, T.
1 / 1 shared
Ferraro, C.
2 / 6 shared
Feilden, E.
1 / 4 shared
Picot, O. T.
1 / 5 shared
Saunders, T.
1 / 4 shared
Meille, S.
1 / 7 shared
Chevalier, J.
1 / 22 shared
Rocha, V. G.
1 / 4 shared
Peijs, Ton
1 / 237 shared
Reece, M. J.
1 / 22 shared
Delia, E.
1 / 5 shared
Reale, F.
1 / 1 shared
Amit, I.
1 / 1 shared
Palczynski, P.
1 / 2 shared
Sherrell, Pc
1 / 1 shared
Agnoli, S.
1 / 12 shared
Craciun, Mf
1 / 5 shared
Jones, Gf
1 / 1 shared
Mehew, Jd
1 / 2 shared
Mattevi, C.
1 / 5 shared
Russo, S.
1 / 16 shared
Bacon, A.
1 / 2 shared
Sykes, J.
12 / 14 shared
Grovenor, C.
14 / 81 shared
Jenkins, M.
1 / 13 shared
Lozano-Perez, S.
22 / 81 shared
English, C.
5 / 7 shared
Smith, G.
9 / 40 shared
Yardley, S.
4 / 4 shared
Lyon, S.
9 / 16 shared
Preuss, M.
8 / 83 shared
Moore, K.
3 / 10 shared
Wei, J.
10 / 19 shared
Wang, P.
6 / 34 shared
Cottis, R.
3 / 4 shared
Hudson, D.
9 / 15 shared
Storer, S.
3 / 3 shared
Chong, K.
1 / 2 shared
Polatidis, E.
3 / 23 shared
Fitzpatrick, M.
2 / 3 shared
Comstock, R.
1 / 2 shared
Ambard, A.
6 / 20 shared
Blat-Yrieix, M.
6 / 7 shared
Frankel, P.
3 / 18 shared
Cottis, B.
3 / 3 shared
Smith, J.
4 / 17 shared
Hallstadius, L.
6 / 16 shared
Saxey, D.
1 / 11 shared
Hughes, G.
1 / 14 shared
Terachi, T.
1 / 10 shared
Yamada, T.
1 / 19 shared
Kruska, K.
1 / 7 shared
Mccomb, D.
1 / 1 shared
Nicholls, R.
1 / 6 shared
Nellist, P.
1 / 14 shared
London, A.
1 / 4 shared
Yates, Jr
1 / 7 shared
Pickard, C.
1 / 2 shared
Moat, R.
1 / 5 shared
Forsey, A.
3 / 4 shared
Frankel, P. G.
2 / 4 shared
Comstock, R. J.
3 / 12 shared
Preuss, Michael
1 / 101 shared
Cottis, R. A.
3 / 12 shared
Grovenor, Crm
1 / 21 shared
Francis, E. M.
2 / 5 shared
Grovenor, C. R. M.
7 / 18 shared
Moat, Richard J.
2 / 33 shared
Moore, Kl
3 / 21 shared
Lyon, Stuart B.
3 / 56 shared
Wei, J. F.
2 / 2 shared
Yardley, S. S.
6 / 6 shared
Moore, K. L.
3 / 6 shared
Francis, E.
1 / 3 shared
Smith, G. D. W.
3 / 9 shared
Sykes, J. M.
3 / 3 shared
Frankel, Philipp
1 / 73 shared
Comstock, B.
2 / 2 shared
Chong, K. B.
2 / 4 shared
Fitzpatrick, M. E.
1 / 20 shared
Chart of publication period
2017
2016
2015
2014
2013
2012
2011

Co-Authors (by relevance)

  • Giuliani, F.
  • Saiz, E.
  • Vandeperre, L.
  • Giovannini, T.
  • Ferraro, C.
  • Feilden, E.
  • Picot, O. T.
  • Saunders, T.
  • Meille, S.
  • Chevalier, J.
  • Rocha, V. G.
  • Peijs, Ton
  • Reece, M. J.
  • Delia, E.
  • Reale, F.
  • Amit, I.
  • Palczynski, P.
  • Sherrell, Pc
  • Agnoli, S.
  • Craciun, Mf
  • Jones, Gf
  • Mehew, Jd
  • Mattevi, C.
  • Russo, S.
  • Bacon, A.
  • Sykes, J.
  • Grovenor, C.
  • Jenkins, M.
  • Lozano-Perez, S.
  • English, C.
  • Smith, G.
  • Yardley, S.
  • Lyon, S.
  • Preuss, M.
  • Moore, K.
  • Wei, J.
  • Wang, P.
  • Cottis, R.
  • Hudson, D.
  • Storer, S.
  • Chong, K.
  • Polatidis, E.
  • Fitzpatrick, M.
  • Comstock, R.
  • Ambard, A.
  • Blat-Yrieix, M.
  • Frankel, P.
  • Cottis, B.
  • Smith, J.
  • Hallstadius, L.
  • Saxey, D.
  • Hughes, G.
  • Terachi, T.
  • Yamada, T.
  • Kruska, K.
  • Mccomb, D.
  • Nicholls, R.
  • Nellist, P.
  • London, A.
  • Yates, Jr
  • Pickard, C.
  • Moat, R.
  • Forsey, A.
  • Frankel, P. G.
  • Comstock, R. J.
  • Preuss, Michael
  • Cottis, R. A.
  • Grovenor, Crm
  • Francis, E. M.
  • Grovenor, C. R. M.
  • Moat, Richard J.
  • Moore, Kl
  • Lyon, Stuart B.
  • Wei, J. F.
  • Yardley, S. S.
  • Moore, K. L.
  • Francis, E.
  • Smith, G. D. W.
  • Sykes, J. M.
  • Frankel, Philipp
  • Comstock, B.
  • Chong, K. B.
  • Fitzpatrick, M. E.
OrganizationsLocationPeople

article

How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys

  • Sykes, J. M.
  • Cottis, R.
  • Hudson, D.
  • Ni, N.
  • Grovenor, C. R. M.
  • Moore, Kl
  • Lyon, Stuart B.
  • Wang, P.
  • Smith, G. D. W.
  • Lozano-Perez, S.
  • Wei, J.
  • Yardley, S. S.
Abstract

Aqueous corrosion and hydrogenation have become major limiting factors to the use of zirconium alloys as fuel cladding and assembly components in water-cooled nuclear reactors. The metal-oxide interface has been a particular focus of previous research, but there is still no clear understanding of what is present at the interface at different stages of the complex oxidation process. We report here a systematic investigation using state-of-the-art instrumentation on the interfaces in several zirconium alloys corroded for different times. We have shown that thin intermediate oxide layers with compositions close to ZrO can be observed in almost all the pre-transition samples studied, and that this layer thickens during the pre-transition stage. Just before the kinetic transition, a large variation in the suboxide width was detected, suggesting that the kinetic transition is an extremely local process. After transition the suboxide was generally absent. In the suboxide locations different structures, including an unidentified phase, were found. The oxygen-saturated (∼30 at.% O) metal regions found beneath the oxide are thickest in the (late) pre-transition samples and significantly thinner in the post-transition samples. We suggest that the suboxide cannot by itself act as a protective layer and conclude that it is the development of interlinked porosity down to the metal-oxide interface that is the reason for the transition in oxidation kinetics. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Topics
  • impedance spectroscopy
  • corrosion
  • phase
  • Oxygen
  • zirconium
  • zirconium alloy
  • porosity