Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhu, Zailing

  • Google
  • 1
  • 3
  • 214

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012A model for the creep deformation behaviour of nickel-based single crystal superalloys214citations

Places of action

Chart of shared publication
Basoalto, Hector
1 / 9 shared
Warnken, Nils
1 / 40 shared
Reed, Roger
1 / 10 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Basoalto, Hector
  • Warnken, Nils
  • Reed, Roger
OrganizationsLocationPeople

article

A model for the creep deformation behaviour of nickel-based single crystal superalloys

  • Basoalto, Hector
  • Zhu, Zailing
  • Warnken, Nils
  • Reed, Roger
Abstract

A physical model for the creep deformation of single crystal superalloys is presented that is sensitive to chemical composition and microstructure. The rate-controlling step is assumed to be climb of dislocations at the matrix/particle interfaces and their rate of escape from trapped configurations; a strong dependence on alloy composition then arises. By testing the predictions of the model against the considerable body of published experimental data, the dependence of the kinetics of creep deformation on alloy chemistry is rationalized. The effects of microstructural scale - precipitate size, geometry and spacing - are also studied. The climb processes assumed at the matrix/precipitate interfaces give rise to the vacancy flux required for the mass transport needed for rafting. For creep deformation at higher temperatures, a modification to the basic theory is proposed to account for a rafting-induced strengthening effect. A first-order estimate for the rate of creep deformation emerges from the model, which is useful for the purposes of alloy design.

Topics
  • impedance spectroscopy
  • single crystal
  • nickel
  • theory
  • dislocation
  • precipitate
  • creep
  • superalloy
  • alloy composition
  • vacancy