People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vorontsov, Vassili A.
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2023Miniaturised experimental simulation of open-die forgingcitations
- 2022Strengthening κ-carbide steels using residual dislocation contentcitations
- 2022Precipitate dissolution during deformation induced twin thickening in a CoNi-base superalloy subject to creepcitations
- 2020Generalised stacking fault energy of Ni-Al and Co-Al-W superalloyscitations
- 2019A nickel based superalloy reinforced by both Ni3Al and Ni3V ordered-fcc precipitatescitations
- 2018Mechanical behaviour of Ti-Nb-Hf alloyscitations
- 2017Alloying effects on oxidation mechanisms in polycrystalline Co–Ni base superalloyscitations
- 2017Functional stability of a ferromagnetic polycrystalline Ni2MnGa high temperature shape memory alloycitations
- 2017A high strength Ti–SiC metal matrix compositecitations
- 2016Coarsening behaviour and interfacial structure of γ′ precipitates in Co-Al-W based superalloyscitations
- 2016Determination of superlattice stacking fault energies in multi-component superalloys
- 2016Multi-scale modelling of high-temperature deformation mechanisms in Co-Al-W-based superalloys.
- 2016Understanding the "blue spot"citations
- 2016The dislocation mechanism of stress corrosion embrittlement in Ti-6Al-2Sn-4Zr-6Mocitations
- 2016Effect of precipitation on mechanical properties in the β-Ti alloy Ti-24Nb-4Zr-8Sncitations
- 2015The effect of grain size on the twin initiation stress in a TWIP steelcitations
- 2015Superelastic load cycling of gum metalcitations
- 2015Nanoprecipitation in a beta-titanium alloycitations
- 2015Segregation at stacking faults within the γ′ phase of two Ni-base superalloys following intermediate temperature creepcitations
- 2014The dynamic behaviour of a twinning induced plasticity steelcitations
- 2014Alloying and the micromechanics of Co-Al-W-X quaternary alloyscitations
- 2014Alloying effects in polycrystalline γ′ strengthened Co-Al-W base alloyscitations
- 2014Effect of alloying on the oxidation behaviour of Co-Al-W superalloyscitations
- 2012High-resolution electron microscopy of dislocation ribbons in a CMSX-4 superalloy single crystalcitations
- 2012Shearing of γ′ precipitates in Ni-base superalloyscitations
- 2011Prediction of mechanical behaviour in Ni-base superalloys using the phase field model of dislocationscitations
- 2010Shearing of γ́ precipitates by a (112) dislocation ribbons in Ni-base superalloyscitations
- 2008Phase field modelling of stacking fault shear in nickel base superalloys
Places of action
Organizations | Location | People |
---|
article
High-resolution electron microscopy of dislocation ribbons in a CMSX-4 superalloy single crystal
Abstract
<p>High-resolution scanning transmission electron microscopy (STEM) has been used to study the structure of dislocations in single crystal superalloy samples that have been subjected to conditions that favour the primary creep regime. The study has revealed the detailed structure of extended a2〈112〉 dislocations as they shear the γ′ precipitates during creep. These dislocations dissociate in a manner that is consistent with predictions made using the phase-field model of dislocations and also suggests the importance of the reordering process during their movement. The shearing done by the a〈1 1 2〉 dislocations was also found to distort the γ/γ′ interface, changing its appearance from linear to a "saw tooth" pattern. Another important observation was the segregation of alloying elements with a high atomic mass to the stacking faults, presumably to reduce their energies during shear. Numerous a2〈110〉 dissociated dislocations were also observed in the γ channels of the superalloy. The high resolution provided by the STEM imaging enables one to study the high-energy faults that are usually difficult to observe in conventional weak-beam TEM, such as complex intrinsic and extrinsic stacking faults in the γ′ and intrinsic stacking faults in the γ, and to make estimates of their energies.</p>