Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yuan, L.

  • Google
  • 7
  • 47
  • 508

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2023How to control the crystallization of metallic glasses during laser powder bed fusion? Towards part-specific 3D printing of in situ composites14citations
  • 2022How to Control the Crystallization of Metallic Glasses During Laser Powder Bed Fusion? Towards Part-Specific 3d Printing of in Situ Compositescitations
  • 2020Towards understanding grain nucleation under Additive Manufacturing solidification conditions188citations
  • 2020Columnar-to-equiaxed transition in a laser scan for metal additive manufacturingcitations
  • 2019Interstitial hydrogen atoms in face-centered cubic iron in the Earth's core60citations
  • 2017Morphological, chemical surface and filtration characterization of a new silicon carbide membrane53citations
  • 2012Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2 GPa Fe–Cr–C steel193citations

Places of action

Chart of shared publication
Choma, Tomasz
2 / 6 shared
Leonowicz, Marcin
2 / 26 shared
Li, X.
2 / 71 shared
Krawczynska, Agnieszka
2 / 7 shared
Swieszkowski, Wojciech
2 / 15 shared
Żrodowski, Cezary
2 / 2 shared
Błyskun, Piotr
2 / 11 shared
Wróblewski, Rafał
2 / 11 shared
Kulikowski, Krzysztof
2 / 18 shared
Małachowska, Aleksandra
2 / 3 shared
Moneta, Grzegorz
2 / 2 shared
Cetner, Tomasz
2 / 2 shared
Jaroszewicz, Jakub
2 / 23 shared
Dobkowska, Anna
2 / 33 shared
Wysocki, Bartlomiej
1 / 4 shared
Ciftci, Jakub
2 / 8 shared
Morończyk, Bartosz
2 / 12 shared
Chulist, Robert
2 / 23 shared
Żrodowski, Łukasz
2 / 12 shared
Masset, Patrick
1 / 2 shared
Wysocki, Bartłomiej
1 / 14 shared
Prasad, A.
2 / 13 shared
Lee, P.
1 / 3 shared
Stjohn, D.
2 / 4 shared
Qiu, D.
1 / 2 shared
Easton, M.
1 / 1 shared
Patel, M.
1 / 9 shared
Sabau, As
1 / 7 shared
Lee, Pd
1 / 41 shared
Sano-Furukawa, A.
1 / 1 shared
Shibazaki, Y.
1 / 3 shared
Ohtani, E.
1 / 2 shared
Terasaki, H.
1 / 1 shared
Hattori, T.
1 / 3 shared
Sanches, Sandra
1 / 2 shared
Pereira, V. J.
1 / 1 shared
Fraga, Maria C.
1 / 1 shared
Benavente, J.
1 / 4 shared
Marcher, J.
1 / 1 shared
Yuso, Mªv Martínez De
1 / 1 shared
Crespo, João Goulão
1 / 14 shared
Rodríguez-Castellón, E.
1 / 1 shared
Jiménez, José Antonio
1 / 51 shared
Raabe, Dierk
1 / 523 shared
Choi, P.
1 / 34 shared
Ponge, D.
1 / 37 shared
Wittig, J. E.
1 / 9 shared
Chart of publication period
2023
2022
2020
2019
2017
2012

Co-Authors (by relevance)

  • Choma, Tomasz
  • Leonowicz, Marcin
  • Li, X.
  • Krawczynska, Agnieszka
  • Swieszkowski, Wojciech
  • Żrodowski, Cezary
  • Błyskun, Piotr
  • Wróblewski, Rafał
  • Kulikowski, Krzysztof
  • Małachowska, Aleksandra
  • Moneta, Grzegorz
  • Cetner, Tomasz
  • Jaroszewicz, Jakub
  • Dobkowska, Anna
  • Wysocki, Bartlomiej
  • Ciftci, Jakub
  • Morończyk, Bartosz
  • Chulist, Robert
  • Żrodowski, Łukasz
  • Masset, Patrick
  • Wysocki, Bartłomiej
  • Prasad, A.
  • Lee, P.
  • Stjohn, D.
  • Qiu, D.
  • Easton, M.
  • Patel, M.
  • Sabau, As
  • Lee, Pd
  • Sano-Furukawa, A.
  • Shibazaki, Y.
  • Ohtani, E.
  • Terasaki, H.
  • Hattori, T.
  • Sanches, Sandra
  • Pereira, V. J.
  • Fraga, Maria C.
  • Benavente, J.
  • Marcher, J.
  • Yuso, Mªv Martínez De
  • Crespo, João Goulão
  • Rodríguez-Castellón, E.
  • Jiménez, José Antonio
  • Raabe, Dierk
  • Choi, P.
  • Ponge, D.
  • Wittig, J. E.
OrganizationsLocationPeople

article

Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2 GPa Fe–Cr–C steel

  • Jiménez, José Antonio
  • Raabe, Dierk
  • Choi, P.
  • Yuan, L.
  • Ponge, D.
  • Wittig, J. E.
Abstract

Austenite reversion during tempering of a Fe–13.6 Cr–0.44 C (wt.%) martensite results in an ultra-high-strength ferritic stainless steel with excellent ductility. The austenite reversion mechanism is coupled to the kinetic freezing of carbon during low-temperature partitioning at the interfaces between martensite and retained austenite and to carbon segregation at martensite–martensite grain boundaries. An advantage of austenite reversion is its scalability, i.e. changing tempering time and temperature tailors the desired strength–ductility profiles (e.g. tempering at 400 °C for 1 min produces a 2 GPa ultimate tensile strength (UTS) and 14% elongation while 30 min at 400 °C results in a UTS of ∼1.75 GPa with an elongation of 23%). The austenite reversion process, carbide precipitation and carbon segregation have been characterized by X-ray diffraction, electron back-scatter diffraction, transmission electron microscopy and atom probe tomography in order to develop the structure–property relationships that control the material’s strength and ductility. ; Peer reviewed

Topics
  • impedance spectroscopy
  • Carbon
  • grain
  • stainless steel
  • x-ray diffraction
  • strength
  • carbide
  • steel
  • transmission electron microscopy
  • precipitation
  • tensile strength
  • ductility
  • atom probe tomography
  • tempering