Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vilarigues, Márcia Gomes

  • Google
  • 2
  • 1
  • 66

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2012Nickel-carbon nanocomposites: Synthesis, structural changes and strengthening mechanisms48citations
  • 2011Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization18citations

Places of action

Chart of shared publication
Nunes, Daniela
2 / 39 shared
Chart of publication period
2012
2011

Co-Authors (by relevance)

  • Nunes, Daniela
OrganizationsLocationPeople

article

Nickel-carbon nanocomposites: Synthesis, structural changes and strengthening mechanisms

  • Nunes, Daniela
  • Vilarigues, Márcia Gomes
Abstract

The present work investigates Ni–nanodiamond and Ni–graphite composites produced by mechanical synthesis and subsequent heattreatments. Processing of nickel–carbon nanocomposites by this powder metallurgy route poses specific challenges, as carbon phases areprone to carbide conversion and amorphization. The processing window for carbide prevention has been established through X-ray diffractionby a systematic variation of the milling parameters. Transmission electron microscopy confirmed the absence of carbide andshowed homogeneous particle distributions, as well as intimate bonding between the metallic matrix and the carbon phases. Ring diffractionpatterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentiallyamorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained largelyunaffected by mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbonfingerprint. The results on the annealed nanocomposites showed that milling with Ni accelerated graphitization of the carbon phasesduring heat treatments at 973 and 1073 K in both composites. At the finer scales, the nanocomposites exhibited a remarkable microhardnessenhancement (70%) compared with pure nanostructured nickel. The Hall–Petch relation and the Orowan–Ashby equation areused to discuss strengthening mechanisms and the load transfer ability to the reinforcing particles.

Topics
  • nanocomposite
  • amorphous
  • Carbon
  • nickel
  • phase
  • grinding
  • milling
  • carbide
  • transmission electron microscopy
  • crystallinity
  • particle distribution