People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mangler, Clemens
University of Vienna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Grain-Size-Dependent Plastic Behavior in Bulk Nanocrystalline FeAl
- 2023Interface effects on titanium growth on graphenecitations
- 2023Creation of Single Vacancies in hBN with Electron Irradiationcitations
- 2021The morphology of doubly-clamped graphene nanoribbons
- 2014Nitrogen controlled iron catalyst phase during carbon nanotube growthcitations
- 2012Radiation effects in bulk nanocrystalline FeAl alloycitations
- 2012Spinodal decomposition in (CaxBa1-x)(y)Fe4Sb12citations
- 2011Growth of nanosized chemically ordered domains in intermetallic FeAl made nanocrystalline by severe plastic deformationcitations
- 2011Three-Dimensional Analysis by Electron Diffraction Methods of Nanocrystalline Materialscitations
- 2011Thermally induced transition from a ferromagnetic to a paramagnetic state in nanocrystalline FeAl processed by high-pressure torsioncitations
- 2010Electron microscopy of severely deformed L12 intermetallicscitations
- 2010Quantitative local profile analysis of nanomaterials by electron diffractioncitations
- 2010Structural modifications during heating of bulk nanocrystalline FeAl produced by high-pressure torsioncitations
- 2008TEM study of local disordering: a structural phase change induced by high-pressure torsioncitations
- 2004Nanostructures in L12-ordered Cu3Au processed by torsion under high pressurecitations
Places of action
Organizations | Location | People |
---|
article
Structural modifications during heating of bulk nanocrystalline FeAl produced by high-pressure torsion
Abstract
The deformation-induced nanostructure developed during high-pressure torsion of B2 long-range ordered FeAl is shown to be unstable upon heating. The structural changes were analyzed using transmission electron microscopy, differential scanning calorimetry and microhardness measurements. Heating up to 220 °C leads to the recurrence of the chemical long-range order that is destroyed during deformation. It is shown that the transition to the long-range-ordered phase evolves in the form of small ordered domains homogeneously distributed inside the nanosized grains. At temperatures between 220 and 370 °C recovery of dislocations and antiphase boundary faults cause a reduction in the grain size from 77 to 35 nm. Grain growth occurs at temperatures above 370 °C. The evolution of the strength monitored by microhardness is discussed in the framework of grain-size hardening and hardening by defect recovery.