Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jabłońska, Marta

  • Google
  • 1
  • 4
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Influence of heat treatment on the formation of ultrafine-grained structure of Al–Li alloys processed by SPD12citations

Places of action

Chart of shared publication
Rodak, Kinga
1 / 8 shared
Mizera, Jarosław
1 / 113 shared
Pawlicki, Jacek
1 / 1 shared
Urbańczyk-Gucwa, A.
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Rodak, Kinga
  • Mizera, Jarosław
  • Pawlicki, Jacek
  • Urbańczyk-Gucwa, A.
OrganizationsLocationPeople

article

Influence of heat treatment on the formation of ultrafine-grained structure of Al–Li alloys processed by SPD

  • Rodak, Kinga
  • Mizera, Jarosław
  • Pawlicki, Jacek
  • Jabłońska, Marta
  • Urbańczyk-Gucwa, A.
Abstract

<p>In this study, binary Al–2.3wt%Li alloy, ternary Al–2.2wt%Li–0.1wt%Zr alloy and quaternary Al–2.2wt%Li–0.1wt%Zr–1.2wt%Cu alloy in the solution treated condition and additionally in aging condition were severely plastically deformed by rolling with cyclic movement of rolls (RCMR) method to produce ultrafine grained structure. Scanning transmission electron microscopy (STEM), scanning electron microscopy with EBSD detector (SEM/EBSD) were used for microstructural characterization and hardness test for a preliminary assessment of mechanical properties. The results shows, that the combination of aging treatments with RCMR deformation can effectively increase the hardness of Al–Li alloys. Second particles hinders the annihilation of dislocations in Al matrix during deformation leading to an increase of dislocation density. Significant amount of nanometric second particles in refined structure to ultrafine scale especially in Al–2.2wt%Li–0.1wt%Zr–1.2wt%Cu alloy effectively prevents the formation of high angle boundaries.</p>

Topics
  • density
  • scanning electron microscopy
  • hardness
  • transmission electron microscopy
  • dislocation
  • aging
  • electron backscatter diffraction
  • aging