People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lieberzeit, Peter
University of Vienna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Novel Approach for the Immobilization of Cellobiose Dehydrogenase in PEDOT:PSS Conductive Layer on Planar Gold Electrodescitations
- 2023Bioanalytische Sensoren auf der Basis von Wärmeleitungeffektencitations
- 2023L-Ascorbic Acid Treatment of Electrochemical Graphene Nanosheets: Reduction Optimization and Application for De-Icing, Water Uptake Prevention, and Corrosion Resistancecitations
- 2022Development of conductive molecularly imprinted polymers (cMIPs) for limonene to improve and interconnect QCM and chemiresistor sensingcitations
- 2021Biomimetic Sensors to Detect Bioanalytes in Real-Life Samples Using Molecularly Imprinted Polymerscitations
- 2021Imprinted polymer and Cu2O-graphene oxide nanocomposite for the detection of disease biomarkerscitations
- 2021Novel dual-sensor for creatinine and 8-hydroxy-2 '-deoxyguanosine using carbon-paste electrode modified with molecularly imprinted polymers and multiple-pulse amperometrycitations
- 2020Molecularly imprinted polymeric coatings for sensitive and selective gravimetric detection of artemethercitations
- 2020Design of heterostructured hybrids comprising ultrathin 2D bismuth tungstate nanosheets reinforced by chloramphenicol imprinted polymers used as biomimetic interfaces for mass-sensitive detectioncitations
- 2020Novel amino-containing molecularly-imprinted polymer coating on magnetite-gold core for sensitive and selective carbofuran detection in foodcitations
- 2019Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@SiO2 for serotonin determinationcitations
- 2018Investigating nanohybrid material based on 3D CNTs@Cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicolcitations
- 2017A novel method for dengue virus detection and antibody screening using a graphene-polymer based electrochemical biosensorcitations
- 2016A Self-Organisation Synthesis Approach for Bacteria Molecularly Imprinted Polymerscitations
- 2014Molecularly imprinted polymer-Ag2S nanoparticle composites for sensing volatile organicscitations
- 2009Generating Bio-Analogous Recognition of Artificial Materials - Sensors and Electronic Noses for Odours
- 2007Printing materials in micro- and nano-scale: Systems for process control
- 2003Chemical sensors - From molecules, complex mixtures to cells - Supramolecular imprinting strategiescitations
Places of action
Organizations | Location | People |
---|
article
Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@SiO2 for serotonin determination
Abstract
Herein, we propose a highly sensitive and selective three-dimensional electrochemical paper-based analytical device (3D-ePAD) to determine serotonin (Ser). It uses a graphite-paste electrode modified with nanoparticles coated with molecularly imprinted polymer (MIP). Fe3O4@Au nanoparticles were encapsulated with silica to create novel nano-sized MIP. Morphology and structural characterization reveal that silica imprinted sites (Fe3O4@Au@SiO2) synthesized via sol-gel methods provide excellent features for Ser detection, including high porosity, and greatly improve analyte diffusion and adsorption to provide a faster response by the MIP sensor. The template molecule was effectively removed by solvent extraction to provide a greater number of specific cavities that enhance analyte capacity and sensitivity. The 3D-ePAD was fabricated by alkyl ketene dimer (AKD)-inkjet printing of a circular hydrophobic detection zone on filter paper for application of aqueous samples, coupled with screen-printed electrodes on the paper, which was folded underneath the hydrophobic zone. The sensor was constructed by drop coating of Fe3O4@Au@SiO2-MIP nanocomposites on the graphite electrode (GPE) surface. The MIP sensor (Fe3O4@Au@SiO2-MIP/GPE) was used in the detection of Ser by linear-sweep voltammetry (LSV) in 0.1 M phosphate buffer at pH 8.0. The device exhibits high sensitivity toward Ser, which we attribute to synergistic effects between catalytic properties, electrical conductivity of Fe3O4@Au@SiO2, and significantly increased numbers of imprinted sites. Ser oxidation was observed at +0.39 V. Anodic peak currents for Ser show linearity from 0.01 to 1000 mu M (y = 0.0075 +/- 0.0049 x + 0.4071 +/- 0.0052, r(2) = 0.993), with a detection limit of 0.002 mu M (3S/N). The device provides good repeatability (% relative standard deviations; RSD) = 4.23%, calculated from the current responses of ten different MIP sensors). The device also exhibits high selectivity and reproducibility (% RSD = 8.35%, obtained from five calibration plots). The analytical performance of the device is suitable for the determination of Ser in pharmaceutical capsules and urine samples. (C) 2019 Elsevier B.V. All rights reserved.