Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rahman, Md Aminur

  • Google
  • 2
  • 3
  • 109

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2008Fabrication of disposable sensors for biomolecule detection using hydrazine electrocatalyst29citations
  • 2007Hydrazine-catalyzed ultrasensitive detection of DNA and proteins80citations

Places of action

Chart of shared publication
Shiddiky, Muhammad J. A.
2 / 12 shared
Shim, Yoon Bo
2 / 2 shared
Cheol, Chang Seung
1 / 1 shared
Chart of publication period
2008
2007

Co-Authors (by relevance)

  • Shiddiky, Muhammad J. A.
  • Shim, Yoon Bo
  • Cheol, Chang Seung
OrganizationsLocationPeople

article

Fabrication of disposable sensors for biomolecule detection using hydrazine electrocatalyst

  • Shiddiky, Muhammad J. A.
  • Shim, Yoon Bo
  • Rahman, Md Aminur
  • Cheol, Chang Seung
Abstract

<p>We have developed electrochemical DNA and protein sensors on screen-printed electrodes based on the catalytic activity of hydrazine. The sensors use carboxylic acid-functionalized conductive polymer, poly-5,2′,5′,2′′-terthiophene-3′-carboxylic acid (polyTTCA) to make firm immobilization of dendrimer (DEN) through the covalent bond formation between the carboxylic acid groups of polymer and amine groups of dendrimer. The gold nanoparticles (AuNPs) were adsorbed on the remaining amine groups of dendrimer. The thiolated DNA probe or primary antibody was subsequently immobilized on the AuNP-covered dendrimer surfaces. Avidin-labeled hydrazine (Av-Hyd) was then immobilized on the sensor surfaces through the avidin-biotin interaction between the Av-Hyd unit and the biotinylated DNA or secondary antibody. The electrocatalytic reduction current of H<sub>2</sub>O<sub>2</sub> was measured by differential pulse voltammetry. The detection signal was amplified by the polyTTCA/DEN assembly loaded with AuNPs (∼ 3.5 nm) onto which target analyte-linked Av-Hyd was adsorbed. Linear dynamic ranges for the electrocatalytic detection of DNA and human immunoglobulin G (IgG) extending from 50 fM to 7.5 nM and from 40 fg/ml to 2.5 ng/ml, respectively, were observed along with detection limits of approximately 30 fM and 25 fg/ml, respectively. The low detection limit of the disposable sensors offers good promise for practical DNA and protein detection.</p>

Topics
  • nanoparticle
  • surface
  • polymer
  • gold
  • amine
  • dendrimer
  • carboxylic acid
  • pulse voltammetry