Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Williams, James S.

  • Google
  • 2
  • 6
  • 44

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Thermal evolution of the metastable r8 and bc8 polymorphs of silicon30citations
  • 2015Nanoindentation of Silicon and Germanium14citations

Places of action

Chart of shared publication
Bradby, Jodie E.
1 / 1 shared
Haberl, Bianca
2 / 4 shared
Shen, Guoyin
1 / 2 shared
Guthrie, Malcolm
1 / 5 shared
Sinogeikin, Stanislav V.
1 / 2 shared
Kiran, Mangalampalli S. R. N.
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Bradby, Jodie E.
  • Haberl, Bianca
  • Shen, Guoyin
  • Guthrie, Malcolm
  • Sinogeikin, Stanislav V.
  • Kiran, Mangalampalli S. R. N.
OrganizationsLocationPeople

booksection

Nanoindentation of Silicon and Germanium

  • Haberl, Bianca
  • Williams, James S.
  • Kiran, Mangalampalli S. R. N.
Abstract

<p>Nanoindentation of silicon and germanium is of interest not only for the measurement of their mechanical properties but more importantly for the fact that they undergo a series of phase transformations under applied pressure. Indeed, after complete pressure release, the material does not return to the starting diamond cubic phase, but several metastable phases are possible, depending on the indentation conditions. In silicon, both crystalline (diamond cubic) and amorphous phases undergo a phase transformation to a dense metallic phase at around 11. GPa, a deformation process that defines the hardness of these materials. On pressure release, either a mixture of a rhombohedral (r8) phase and a body-centered cubic (bc8) phase or a pressure-induced amorphous silicon structure results. The mixed r8/bc8 phase is stable to 200. °C and has been shown to have properties of a narrow bandgap semiconductor and can be doped both n- and p-type. In germanium, the deformation processes under indentation are more complex with both plastic deformation by slip and twinning as well as phase transformation observed for diamond cubic germanium, depending on the indentation conditions. Amorphous germanium is easier to phase transform since slip-induced processes are avoided. Both crystalline and amorphous forms of germanium can be transformed to a high-density metallic phase under pressure, but several different transformation pathways are possible on pressure release, with the r8, hexagonal diamond and simple tetragonal end phases obtained under specific conditions. These deformation and phase transformation processes under indentation are reviewed in this chapter and compared with the behavior of these materials under diamond anvil cell pressure.</p>

Topics
  • density
  • impedance spectroscopy
  • polymer
  • amorphous
  • semiconductor
  • hardness
  • nanoindentation
  • Silicon
  • Germanium
  • metastable phase