People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pettersson, Frank
Åbo Akademi University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Mathematical optimization modeling for scenario analysis of integrated steelworks transitioning towards hydrogen-based reductioncitations
- 2024Optimizing the transition pathway of a steel plant towards hydrogen-based steelmaking
- 2017Blast furnace charging optimization using multi-objective evolutionary and genetic algorithmscitations
- 2015Optimal operation strategy and gas utilization in a future integrated steel plantcitations
- 2015Sustainable development of primary steelmaking under novel blast furnace operation and injection of different reducing agents
- 2013Optimization of a steel plant with multiple blast furnaces under biomass injectioncitations
- 2013Evolution of charging programs for optimal burden distribution in the blast furnace
- 2013Genetic programming evolved through bi-objective genetic algorithms applied to a blast furnacecitations
- 2012Steelmaking integrated with a polygeneration plant for improved sustainability
- 2012Optimal resource allocation in integrated steelmaking with biomass as auxiliary reductant in the blast furnace
- 2011Multiobjective optimization of top gas recycling conditions in the blast furnace by genetic algorithmscitations
- 2011Optimization of blast furnace steelmaking process from a process integration perspective
- 2011Nonlinear modeling method applied to prediction of hot metal silicon in the ironmaking blast furnacecitations
- 2011Optimization study of steelmaking under novel blast furnace operation combined with methanol productioncitations
- 2010Multi-objective optimization of ironmaking in the blast furnace with top gas recycling
- 2010Optimization of top gas recycling conditions under high oxygen enrichment in the blast furnace
- 2010Optimisation study of ironmaking using biomasscitations
- 2010Analysing blast furnace data using evolutionary neural network and multiobjective genetic algorithmscitations
- 2009Optimization of Blast Furnace Operation Under Top Gas Recycling
- 2009Mathematical Optimization of Ironmaking with Biomass as Auxiliary Reductant in the Blast Furnace
- 2009Future potential for biomass use in blast furnace ironmakingcitations
- 2009Genetic Algorithm-Based Multicriteria Optimization of Ironmaking in the Blast Furnacecitations
- 2009Analyzing Sparse Data for Nitride Spinels Using Data Mining, Neural Networks, and Multiobjective Genetic Algorithmscitations
- 2007Evolving nonlinear time-series models of the hot metal silicon content in the blast furnacecitations
- 2007Neural networks analysis of steel plate processing augmented by multi-objective genetic algorithmscitations
- 2006Model for economic optimization of iron production in the blast furnace
- 2006Modelling noisy blast furnace data using genetic algorithms and neural networkscitations
- 2005A genetic algorithm evolving charging programs in the ironmaking blast furnacecitations
Places of action
Organizations | Location | People |
---|
article
Sustainable development of primary steelmaking under novel blast furnace operation and injection of different reducing agents
Abstract
This paper presents a numerical study of economics and environmental impact of an integrated steelmaking plant, using surrogate, empirical and shortcut models based on mass and energy balance equations for the unit operations. In addition to the steelmaking processes, chemical processes such as pressure/temperature swing adsorption, membrane, chemical absorption technologies are included for gas treatment. A methanol plant integrated with a combined heat and power plant forms a polygeneration system that utilizes energy and gases of the site. The overall model has been applied using mathematical programming to find an optimal design and operation of the integrated plant for an economic objective under several development stages of the technology. New concepts studied are blast furnace operation with different degrees of top gas recycling and oxygen enrichment of the blast to hill oxygen blast furnace. Coke in the process may be partially replaced with other carbon carriers. The system is optimized by maximizing the net present value, which includes (i)nvestment costs for the new unit processes as well as costs of feed materials, CO2 emission and sequestration, operation costs and credit for products produced. The effect of using different fuels such as oil, natural gas, pulverized coal coke oven gas, charcoal and biomass is studied, particularly focusing on biomass torrefaction and the effect of integration on arising reductant in steelmaking to reduce emissions from the system. The effects of steel plant capacity on the optimal choice of carbon carriers are also studied. It is demonstrated that it is possible to decrease the specific CO2 emissions of primary steelmaking from fossil fuels from 1.6 t of CO2 to a level of 0.75-1.0 t and further by more than 50% through the integration of biofuels in considered scenarios.